\begin{definition}\label{universal_set} A set $V$ is universal iff %every set is an element of $V$. for all sets $x$ we have $x\in V$. \end{definition} \begin{theorem}\label{no_universal_set} There exists no universal set. \end{theorem} \begin{proof} Suppose not. Take a universal set $V$. Let $R = \{ x\in V \mid x\not\in x \}$. Then $R\in R$ iff $R\not\in R$. Contradiction. \end{proof}