\begin{axiom}[Extensionality]\label{ext} Suppose for all $a$ we have $a\in A$ iff $a\in B$. Then $A = B$. \end{axiom} \begin{axiom}\label{union_defn} Let $A, B$ be sets. $a\in A\union B$ iff $a\in A$ or $a\in B$. \end{axiom} \begin{proposition}\label{union_comm} $A\union B = B\union A$. \end{proposition} \begin{proposition}\label{union_assoc} $(A\union B)\union C = A\union (B\union C)$. \end{proposition} \begin{proof} For all $a$ we have if $a\in (A\union B)\union C$, then $a\in A\union (B\union C)$. For all $a$ we have if $a\in A\union (B\union C)$, then $a\in (A\union B)\union C$. \end{proof}