[ BlockAbbr ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 1 , sourceColumn = Pos 1 } ) ( Marker "empty" ) ( Abbreviation ( SymbolPredicate ( PredicateAdj [ Just ( Word "empty" ) ] ) ) ( Scope ( Not ( Quantified Existentially ( Scope ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Command "in" ) ) ) [ TermVar ( B ( NamedVar "y" ) ) , TermVar ( F ( TermVar ( B 0 ) ) ) ] ) ) ) ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 5 , sourceColumn = Pos 1 } ) ( Marker "dummy_abbr_test_adj" ) ( Lemma [] ( Connected Implication ( TermSymbol ( SymbolPredicate ( PredicateAdj [ Just ( Word "empty" ) ] ) ) [ TermVar ( NamedVar "x" ) ] ) ( TermSymbol ( SymbolPredicate ( PredicateAdj [ Just ( Word "empty" ) ] ) ) [ TermVar ( NamedVar "x" ) ] ) ) ) , BlockAbbr ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 11 , sourceColumn = Pos 1 } ) ( Marker "function" ) ( Abbreviation ( SymbolPredicate ( PredicateNoun ( SgPl { sg = [ Just ( Word "function" ) ] , pl = [ Just ( Word "functions" ) ] } ) ) ) ( Scope ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Symbol "=" ) ) ) [ TermVar ( B 0 ) , TermVar ( B 0 ) ] ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 15 , sourceColumn = Pos 1 } ) ( Marker "dummy_abbr_test_noun" ) ( Lemma [] ( TermSymbol ( SymbolPredicate ( PredicateNoun ( SgPl { sg = [ Just ( Word "function" ) ] , pl = [ Just ( Word "functions" ) ] } ) ) ) [ TermVar ( NamedVar "x" ) ] ) ) , BlockAbbr ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 21 , sourceColumn = Pos 1 } ) ( Marker "converges" ) ( Abbreviation ( SymbolPredicate ( PredicateVerb ( SgPl { sg = [ Just ( Word "converges" ) , Just ( Word "to" ) , Nothing ] , pl = [ Just ( Word "converge" ) , Just ( Word "to" ) , Nothing ] } ) ) ) ( Scope ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Symbol "=" ) ) ) [ TermVar ( B 0 ) , TermVar ( B 1 ) ] ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 25 , sourceColumn = Pos 1 } ) ( Marker "dummy_abbr_test_verb" ) ( Lemma [] ( Connected Implication ( TermSymbol ( SymbolPredicate ( PredicateVerb ( SgPl { sg = [ Just ( Word "converges" ) , Just ( Word "to" ) , Nothing ] , pl = [ Just ( Word "converge" ) , Just ( Word "to" ) , Nothing ] } ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Symbol "=" ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 31 , sourceColumn = Pos 1 } ) ( Marker "abbr_test_notin" ) ( Lemma [] ( Connected Implication ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Command "notin" ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ( Not ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Command "in" ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 37 , sourceColumn = Pos 1 } ) ( Marker "abbr_test_elementof_is_in" ) ( Lemma [] ( Connected Implication ( TermSymbol ( SymbolPredicate ( PredicateNoun ( SgPl { sg = [ Just ( Word "element" ) , Just ( Word "of" ) , Nothing ] , pl = [ Just ( Word "elements" ) , Just ( Word "of" ) , Nothing ] } ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Command "in" ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ) ) , BlockLemma ( SourcePos { sourceName = "test/examples/abbr.tex" , sourceLine = Pos 43 , sourceColumn = Pos 1 } ) ( Marker "abbr_test_equals_is_eq" ) ( Lemma [] ( Connected Implication ( TermSymbol ( SymbolPredicate ( PredicateVerb ( SgPl { sg = [ Just ( Word "equals" ) , Nothing ] , pl = [ Just ( Word "equal" ) , Nothing ] } ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ( TermSymbol ( SymbolPredicate ( PredicateRelation ( Symbol "=" ) ) ) [ TermVar ( NamedVar "x" ) , TermVar ( NamedVar "y" ) ] ) ) ) ]