diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-16 16:19:36 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-16 16:19:36 +0200 |
| commit | 13d7b11c23f8862c9f214c46ee05fad314e9e698 (patch) | |
| tree | 431a2a28c0e818b8a75a80d4da8f3831048aab50 | |
| parent | 588c6ab14184cab4bb7df89def641acaafe3b7eb (diff) | |
Finished proof of topological basis
| -rw-r--r-- | library/numbers.tex | 4 | ||||
| -rw-r--r-- | library/topology/real-topological-space.tex | 164 |
2 files changed, 157 insertions, 11 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index 73eefc8..98339ad 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -386,7 +386,9 @@ Commutivatiy of the standart operations For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} - +\begin{axiom}\label{reals_axiom_assoc} + For all $x,y,z \in \reals$ we have $(x + y) + z = x + (y + z)$. +\end{axiom} Existence of one and Zero diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex index ffdf46e..428ee24 100644 --- a/library/topology/real-topological-space.tex +++ b/library/topology/real-topological-space.tex @@ -193,7 +193,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have $\epsBall{x}{\delta} \in \topoBasisReals$. \end{lemma} -\begin{lemma}\label{realspuls_in_reals_plus} +\begin{lemma}\label{realsplus_in_reals_plus} For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x + y \in \reals$. \end{lemma} @@ -207,6 +207,36 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$. \end{lemma} +\begin{lemma}\label{reals_existence_addition_reverse} + For all $\delta \in \reals$ there exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. +\end{lemma} +\begin{proof} + Fix $\delta \in \reals$. + Follows by \cref{reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}. +\end{proof} + +\begin{lemma}\label{reals_addition_minus_behavior1} + For all $a,b,c \in \reals$ such that $a = b + c$ we have $b = a - c$. +\end{lemma} +\begin{proof} + It suffices to show that for all $a \in \reals$ for all $b \in \reals$ for all $c \in \reals$ if $a = b + c$ then $b = a - c$. + Fix $a \in \reals$. + Fix $b \in \reals$. + Fix $c \in \reals$. + Suppose $a = b + c$. + Then $a + \neg{c} = b + c + \neg{c}$. + Therefore $a - c = b + c + \neg{c}$. + $a - c = (b + c) - c$. + $(b + c) - c = (b + c) + \neg{c}$. + $(b + c) + \neg{c} = b + (c + \neg{c})$. + $b + (c + \neg{c}) = b + (\zero)$. + $a - c = b$. +\end{proof} + +\begin{lemma}\label{reals_addition_minus_behavior2} + For all $a,b,c \in \reals$ such that $a = b - c$ we have $b = c + a$. +\end{lemma} + \begin{lemma}\label{open_interval_eq_eps_ball} Suppose $a,b \in \reals$. Suppose $a < b$. @@ -214,11 +244,71 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have \end{lemma} \begin{proof} Let $\delta = (b-a)$. - $\delta$ is positiv by \cref{minus_}. + $\delta$ is positiv by \cref{minus_in_reals,minus_behavior3,reals_axiom_zero_in_reals,reals_order_behavior_with_addition,minus_behavior1,minus}. There exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$. + Let $x = a + \epsilon$. + $a + \delta = b$. + $a + \epsilon + \epsilon = b$. + $x + \epsilon = b$. + $\epsilon \in \realsplus$ by \cref{reals_order_behavior_with_addition,reals_axiom_kommu,reals_axiom_zero,reals_order_is_transitive,reals_add,minus_behavior1,minus_behavior3,minus,reals_order_total,reals_axiom_zero_in_reals,realsplus}. + $a = x - \epsilon$. + $b = x + \epsilon$. + We show that $\intervalopen{a}{b} \subseteq \epsBall{x}{\epsilon}$. + \begin{subproof} + It suffices to show that for all $y \in \intervalopen{a}{b}$ we have $y \in \epsBall{x}{\epsilon}$. + Fix $y \in \intervalopen{a}{b}$. + \end{subproof} + We show that $\epsBall{x}{\epsilon} \subseteq \intervalopen{a}{b}$. + \begin{subproof} + It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$. + Fix $y \in \epsBall{x}{\epsilon}$. + \end{subproof} \end{proof} +\begin{lemma}\label{intersection_openinterval_inclusion_of_border} + Suppose $a,b,x,y \in \reals$. + Suppose $a < b$. + Suppose $x < y$. + If $a \leq x < y \leq b$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{intersection_openinterval_lower_border_eq} + Suppose $a,b,x,y \in \reals$. + Suppose $a < b$. + Suppose $x < y$. + If $a = x$ and $b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{intersection_openinterval_upper_border_eq} + Suppose $a,b,x,y \in \reals$. + Suppose $a < b$. + Suppose $x < y$. + If $a \leq x$ and $b = y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{intersection_openinterval_none_border_eq} + Suppose $a,b,x,y \in \reals$. + Suppose $a < b$. + Suppose $x < y$. + If $a \leq x < b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{b}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{reals_order_total2} + For all $a,b \in \reals$ we have $a < b \lor a > b \lor a = b$. +\end{lemma} \begin{theorem}\label{topological_basis_reals_is_basis} @@ -242,15 +332,69 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$. Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$. Then $ (x_2 - \beta) < x < (x_2 + \beta)$. - We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$. - \begin{subproof} - Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. - $x \in \epsBall{x}{\delta}$. - $\epsBall{x}{\delta} \subseteq U$. - $\epsBall{x}{\delta} \subseteq V$. - $\epsBall{x}{\delta} \in B$. + Let $a = (x_1 - \alpha)$. + Let $b = (x_1 + \alpha)$. + Let $c = (x_2 - \beta)$. + Let $d = (x_2 + \beta)$. + We have $a < b$ and $a < x$ and $x < b$. + We have $c < d$ and $c < x$ and $x < d$. + We have $a \in \reals$. + We have $b \in \reals$. + We have $c \in \reals$. + We have $d \in \reals$. + We show that there exist $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$. + \begin{subproof} + \begin{byCase} + \caseOf{$a < c$.} + \begin{byCase} + \caseOf{$b < d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \caseOf{$b = d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \caseOf{$b > d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \end{byCase} + \caseOf{$a = c$.} + \begin{byCase} + \caseOf{$b < d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \caseOf{$b = d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \caseOf{$b > d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}. + \end{byCase} + \caseOf{$a > c$.} + \begin{byCase} + \caseOf{$b < d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. + \caseOf{$b = d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. + \caseOf{$b > d$.} + Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}. + \end{byCase} + \end{byCase} \end{subproof} - It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. + + Take $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$. + We have $a',b' \in \reals$ by assumption. + We have $a' < b'$ by \cref{id_img,epsilon_ball,minus,intervalopen,reals_order_is_transitive}. + Then there exist $x',\epsilon'$ such that $x' \in \reals$ and $\epsilon' \in \realsplus$ and $\intervalopen{a'}{b'} = \epsBall{x'}{\epsilon'}$. + Then $x \in \epsBall{x'}{\epsilon'}$. + + Follows by \cref{inter_lower_left,inter_lower_right,epsilon_ball,topological_basis_reals_eps_ball}. + %Then $(x_1 - \alpha) < (x_2 + \beta)$. + + %Therefore $U \inter V = \intervalopen{}{(x_2 + \beta)}$. + + %We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$. + %\begin{subproof} + % Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. + % $x \in \epsBall{x}{\delta}$. + % $\epsBall{x}{\delta} \subseteq U$. + % $\epsBall{x}{\delta} \subseteq V$. + % $\epsBall{x}{\delta} \in B$. + %\end{subproof} + %It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$. %It suffices to show that there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} \subseteq u \inter V$. |
