diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-05-22 20:17:33 +0200 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-05-22 20:17:33 +0200 |
| commit | 342ac0ab2f01b0b98886a0b3db77917d86ded2dc (patch) | |
| tree | 122cb65888c7f73e5b613f25c2c88ffc63e3d345 | |
| parent | 3e4e7afc69bf43b3b45bde346c92f267e9b15c39 (diff) | |
Add filter lemmas
| -rw-r--r-- | library/set/filter.tex | 12 |
1 files changed, 12 insertions, 0 deletions
diff --git a/library/set/filter.tex b/library/set/filter.tex index 59b647f..e196b64 100644 --- a/library/set/filter.tex +++ b/library/set/filter.tex @@ -51,12 +51,24 @@ Follows by \cref{filter_inter_in_iff}. \end{proof} +\begin{proposition}\label{filter_in_iff_exists_subset} + Let $F$ be a filter on $S$. + Suppose $B\subseteq S$. + Then $B\in F$ iff there exists $A\subseteq B$ such that $A\in F$. +\end{proposition} + + \subsection{Principal filters over a set} \begin{definition}\label{principalfilter} $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. \end{definition} +\begin{proposition}\label{principalfilter_iff} + Suppose $A, B\subseteq S$. + Then $B\in\principalfilter{S}{A}$ iff $A\subseteq B$. +\end{proposition} + \begin{proposition}\label{principalfilter_is_filter} Suppose $A\subseteq S$. Suppose $A$ is inhabited. |
