summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-12 15:55:17 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-12 15:55:17 +0200
commit8a19eec1e581efa473af0173ba79b553e4191ffa (patch)
treef7225e37f2a699b8e557bd2fd05589222ec0177e
parentb51f61e6be5be4729e61ede79fb0bd3cb26f57a6 (diff)
way way way more urysohn
-rw-r--r--library/topology/urysohn.tex58
1 files changed, 22 insertions, 36 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 414043f..3be3c30 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -461,8 +461,7 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
- %%------------- Maybe use Abstrect.hs line 368 "Local Function".
-
+
We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$
we have $f(x) = \rfrac{n}{\pot(m)}$.
@@ -513,13 +512,7 @@ The first tept will be a formalisation of chain constructions.
Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
- %We show that there exist $\kappa$ such that $\kappa$ is the limit sequence of $\gamma$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
-
- %Let $\gamma(n)(x) = \apply{\gamma(n)}{x}$ for $x\in \carrier[X]$
-
+
We show that for all $n \in \naturals$ we have $\gamma(n)$
is a function from $\carrier[X]$ to $\reals$.
\begin{subproof}
@@ -552,49 +545,42 @@ The first tept will be a formalisation of chain constructions.
Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
\end{subproof}
-
-
- %Let $S(x) = \{(n,x) \mid n \in naturals \mid x = (\gamma(n))(x)\}$.
-
- %Let $S(x)
-
- %We show that there exist $F$ such that
- %for all $x \in \carrier[X]$ we have $F(x)$ is
-
-
- %We show that there exist $F$ such that
- %$F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and
- %for all $x \in \carrier[X]$ we have
- %there exist $k \in \intervalclosed{\zero}{1}$
- %such that $F(x) = k$ and
- %for all $\epsilon \in \reals$ such that $\epsilon > \zero$
- %we have there exist $N \in \naturals$ such that
- %for all $N' \in \naturals$ such that $N' > N$
- %we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$.
- %\begin{subproof}
- % Omitted.
- %\end{subproof}
Let $G(x) = g(x)$ for $x \in \carrier[X]$.
We have $\dom{G} = \carrier[X]$.
- %For all $x \in \carrier[X]$ for all $n \in \naturals$ we have $g(x) \leq \apply{\gamma(n)}{x}$.
-
We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
\begin{subproof}
Fix $x \in \dom{G}$.
It suffices to show that $g(x) \in \reals$.
- %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$.
-
+ There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
+ $g(x)= k$.
+
+ Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
\end{subproof}
We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
\begin{subproof}
- Omitted.
+ Fix $x \in \dom{G}$.
+ Then $x \in \carrier[X]$.
+ \begin{byCase}
+ \caseOf{$x \in A$.}
+ For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 0$.
+
+
+ \caseOf{$x \notin A$.}
+ \begin{byCase}
+ \caseOf{$x \in B$.}
+ OFor all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+
+ \caseOf{$x \notin B$.}
+ Omitted.
+ \end{byCase}
+ \end{byCase}
\end{subproof}