summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-05-25 01:21:17 +0200
committeradelon <22380201+adelon@users.noreply.github.com>2024-05-25 01:21:17 +0200
commita5deeef9c3214f0f2ccd90789f5344a88544d65b (patch)
tree3f9596c737946b2dd42eb27c52250676fda77f95
parent091da55df4de2d27697203fdddcdacd3c713b38c (diff)
Prove `emptyset_open` to replace structure axiom
-rw-r--r--library/set.tex6
-rw-r--r--library/topology/topological-space.tex10
2 files changed, 11 insertions, 5 deletions
diff --git a/library/set.tex b/library/set.tex
index e7e062f..fcd2642 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -131,8 +131,7 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
If $x$ and $y$ are empty, then $x = y$.
\end{proposition}
-\begin{proposition}%
-\label{emptyset_subseteq}
+\begin{proposition}\label{emptyset_subseteq}
For all $a$ we have $\emptyset \subseteq a$.
% LATER $\emptyset$ is a subset of every set.
\end{proposition}
@@ -266,8 +265,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
There exists $B\in C$ such that $A\in B$.
\end{proof}
-\begin{proposition}%
-\label{unions_emptyset}
+\begin{proposition}\label{unions_emptyset}
$\unions{\emptyset} = \emptyset$.
\end{proposition}
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index e467d48..2bbdf09 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -11,7 +11,6 @@
such that
\begin{enumerate}
\item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
- \item\label{emptyset_open} $\emptyset\in\opens[X]$.
\item\label{carrier_open} $\carrier[X]\in\opens[X]$.
\item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
\item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
@@ -26,6 +25,15 @@
$U$ is open in $X$ iff $U\in\opens[X]$.
\end{abbreviation}
+\begin{proposition}\label{emptyset_open}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is open in $X$.
+\end{proposition}
+\begin{proof}
+ We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}.
+ Follows by \cref{opens_unions}.
+\end{proof}
+
\begin{proposition}\label{union_open}
Let $X$ be a topological space.
Suppose $A$, $B$ are open.