summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-07-21 12:26:20 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-07-21 12:26:20 +0200
commitcbac8ca4a5bf8ff38af3e512956ea1e468965194 (patch)
tree27f3b88aca1fbf8d1d2cf2ebfd44a0957758b5ab
parent36e03142465e482f2b5506cd35dab5ef9cc9fd66 (diff)
Further Formalisation on numbers
-rw-r--r--latex/naproche.sty1
-rw-r--r--library/everything.tex2
-rw-r--r--library/numbers.tex165
3 files changed, 110 insertions, 58 deletions
diff --git a/latex/naproche.sty b/latex/naproche.sty
index 476d3dd..7ef2359 100644
--- a/latex/naproche.sty
+++ b/latex/naproche.sty
@@ -132,6 +132,7 @@
\newcommand{\integers}{\mathcal{Z}}
\newcommand{\zero}{0}
\newcommand{\one}{1}
+\newcommand{\rmul}{\cdot}
\newcommand\restrl[2]{{% we make the whole thing an ordinary symbol
diff --git a/library/everything.tex b/library/everything.tex
index 29b97b7..b966197 100644
--- a/library/everything.tex
+++ b/library/everything.tex
@@ -29,7 +29,7 @@
\import{topology/basis.tex}
\import{topology/disconnection.tex}
\import{topology/separation.tex}
-%\import{numbers.tex}
+\import{numbers.tex}
\begin{proposition}\label{trivial}
$x = x$.
diff --git a/library/numbers.tex b/library/numbers.tex
index 4ccba67..0bfae2d 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -18,34 +18,6 @@
$x \rmul y$ is a set.
\end{signature}
-\begin{axiom}\label{reals_axiom_order}
- $\lt[\reals]$ is an order on $\reals$.
-\end{axiom}
-
-\begin{abbreviation}\label{lesseq_on_reals}
- $x \leq y$ iff $(x,y) \in \lt[\reals]$.
-\end{abbreviation}
-
-\begin{abbreviation}\label{less_on_reals}
- $x < y$ iff it is wrong that $y \leq x$.
-\end{abbreviation}
-
-\begin{abbreviation}\label{greater_on_reals}
- $x > y$ iff $y \leq x$.
-\end{abbreviation}
-
-\begin{abbreviation}\label{greatereq_on_reals}
- $x \geq y$ iff it is wrong that $x < y$.
-\end{abbreviation}
-
-\begin{abbreviation}\label{is_positiv}
- $x$ is positiv iff $x > \zero$.
-\end{abbreviation}
-
-
-%Structure TODO:
-% Take as may axioms as needed - Tarski Axioms of reals
-%Implement Naturals -> Integer -> rationals -> reals
\subsection{Creation of natural numbers}
@@ -384,14 +356,7 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $n,m \in \reals$ we have $(n + m) \in \reals$.
\end{axiom}
-\begin{axiom}\label{reals_axiom_dense}
- For all $x,y \in \reals$ if $x < y$ then
- there exist $z \in \reals$ such that $x < z$ and $z < y$.
-\end{axiom}
-\begin{axiom}\label{reals_axiom_assoc}
- For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$.
-\end{axiom}
\begin{axiom}\label{reals_axiom_kommu}
For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$.
@@ -417,31 +382,72 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$.
\end{axiom}
-\begin{axiom}\label{reals_axiom_dedekind_complete}
- For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
- such that $x < z < y$.
-\end{axiom}
-
\begin{axiom}\label{reals_disstro2}
For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$.
\end{axiom}
-
\begin{axiom}\label{reals_reducion_on_addition}
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{axiom}
-\begin{axiom}\label{zero_less_one}
- $\zero < 1$.
+\begin{abbreviation}\label{rless}
+ $x < y$ iff $x \rless y$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{less_on_reals}
+ $x \leq y$ iff it is wrong that $y < x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greater_on_reals}
+ $x > y$ iff $y \leq x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greatereq_on_reals}
+ $x \geq y$ iff it is wrong that $x < y$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{is_positiv}
+ $x$ is positiv iff $x > \zero$.
+\end{abbreviation}
+
+
+
+
+
+\begin{axiom}\label{tarski1}
+ For all $x,y \in \reals$ we have if $x < y$ then $\lnot y < x$.
+\end{axiom}
+
+\begin{axiom}\label{tarski2}
+ For all $x,y \in \reals$ if $x < y$ then
+ there exist $z \in \reals$ such that $x < z$ and $z < y$.
+\end{axiom}
+
+\begin{axiom}\label{tarski3}
+ For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
+ such that $x < z < y$.
\end{axiom}
-\begin{axiom}\label{reals_axiom_order_def}
- Suppose $x,y,z,w \in \reals$.
- If $x + y < z + w$ then $x < z \lor y < w$.
+\begin{axiom}\label{tarski4}
+ For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$.
+\end{axiom}
+
+\begin{axiom}\label{tarski5}
+ For all $x,y \in \reals$ we have there exist $z \in \reals$ such that $x + z = y$.
\end{axiom}
+\begin{axiom}\label{tarski8}
+ $\zero < 1$.
+\end{axiom}
+
+\begin{axiom}\label{labelordersossss}
+ For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$.
+\end{axiom}
+\begin{axiom}\label{nocheinschoeneslabel}
+ For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$.
+\end{axiom}
\subsection{The Intergers}
@@ -465,8 +471,8 @@ Such that we can introduce the integers and raitionals as smooth as possible.
\end{lemma}
\begin{proof}
\begin{byCase}
- \caseOf{$m = \zero$.} Trivial.%Follows by \cref{neg_of_zero,minus,neg,reals_add}.
- \caseOf{$m \neq \zero$.} Trivial.% Follows by \cref{neg_of_zero,minus,neg,reals_add}.
+ \caseOf{$m = \zero$.} Trivial.
+ \caseOf{$m \neq \zero$.} Trivial.
\end{byCase}
\end{proof}
@@ -496,16 +502,31 @@ Such that we can introduce the integers and raitionals as smooth as possible.
$\integers = \{ z \in \reals \mid \exists n \in \naturals. n = z \lor \neg{n} = z\}$.
\end{lemma}
\begin{proof}
- Let $P = \{ z \in \reals \mid \exists n \in \naturals. n = z \lor \neg{n} = z\}$.
- \begin{byCase}
- \caseOf{$\integers \subseteq P$.} Trivial.
- \caseOf{$P \subseteq \integers$.} Trivial.
- \end{byCase}
+ Omitted.
\end{proof}
+\begin{abbreviation}\label{positiv_real_number}
+ $r$ is a positiv real number iff $r > \zero$ and $r \in \reals$.
+\end{abbreviation}
+\begin{proposition}\label{integers_negativ_times_negativ_is_positiv}
+ Suppose $n,m \in \integers$.
+ Suppose $n < \zero$ and $m < \zero$.
+ Then $n \rmul m > \zero$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+ %$n \neq \zero$ and $m \neq \zero$.
+ %For all $k \in \naturals$ we have $k = \zero \lor k > \zero$.
+ %There exists $n' \in \reals$ such that $n' + n = \zero$.
+ %There exists $m' \in \reals$ such that $m' + m = \zero$.
+\end{proof}
+
+%TODO: negativ * negativ = positiv.
+
+
\subsection{The Rationals}
\begin{axiom}\label{invers_reals}
@@ -520,26 +541,56 @@ Such that we can introduce the integers and raitionals as smooth as possible.
$\naturalsPlus = \naturals \setminus \{\zero\}$.
\end{abbreviation}
-\begin{definition}\label{rationals}
+\begin{definition}\label{rationals} %TODO: Vielleicht ist hier die definition das alle inversen von den ganzenzahlen und die ganzenzahlen selbst die rationalen zahlen erzeugen
$\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \naturalsPlus. q = \rfrac{z}{n} \}$.
\end{definition}
+\begin{abbreviation}\label{nominator}
+ $z$ is nominator of $q$ iff there exists $n \in \naturalsPlus$ such that $q = \rfrac{z}{n}$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{denominator}
+ $n$ is denominator of $q$ iff there exists $z \in \integers$ such that $q = \rfrac{z}{n}$.
+\end{abbreviation}
+
+%\begin{proposition}\label{q_is_less_then_p_if_denominator_is_bigger_and_nominator_is_equal}
+% Suppose $p,q \in \rationals$.
+% Suppose $z \in \naturals$.
+% Suppose $p$ is positiv.
+% Suppose $q$ is positiv.
+% Suppose $z$ is nominator of $p$.
+% Suppose $z$ is nominator of $p$.
+% Suppose $p'$ is denominator of $p$.
+% Suppose $q'$ is denominator of $q$.
+% Then $p \leq q$ iff $p' \geq q'$.
+%\end{proposition}
+
+
+%\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one}
+% For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$.
+%\end{theorem}
+
+% TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung,
\subsection{Order on the reals}
+
+
\begin{lemma}\label{plus_one_order}
For all $r\in \reals$ we have $ r < r + 1$.
\end{lemma}
\begin{proof}
- %Follows by \cref{reals_axiom_one,reals_axiom_order,reals_axiom_order_def,zero_less_one,reals}.
+ Omitted.
\end{proof}
\begin{lemma}\label{negation_and_order}
Suppose $r \in \reals$.
$r \leq \zero$ iff $\zero \leq \neg{r}$.
\end{lemma}
-
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{lemma}\label{reals_add_of_positiv}
@@ -548,7 +599,7 @@ Such that we can introduce the integers and raitionals as smooth as possible.
Then $x + y$ is positiv.
\end{lemma}
\begin{proof}
-
+ Omitted.
\end{proof}
\begin{lemma}\label{reals_mul_of_positiv}