summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-02 13:43:44 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-02 13:43:44 +0200
commitd1d6ad98c26ffc392270665e8d0e4d2229984f82 (patch)
treefbc6154673a153c7e1a42befc4211bfb4b732c35
parent36065f6a7fcc8f4d23b98be642c7fa7019ce2b79 (diff)
working commit
-rw-r--r--library/topology/urysohn2.tex20
1 files changed, 14 insertions, 6 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index f70d679..ad3f1d7 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -60,7 +60,7 @@
\begin{definition}\label{chain_of_subsets}
- $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$.
+ $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$.
\end{definition}
@@ -156,10 +156,20 @@
$\dom{U_0} = N$.
$\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
$U_0$ is a sequence.
- $U_0$ is a chain of subsets in $X'$.
+ We show that $U_0$ is a chain of subsets in $X$.
+ \begin{subproof}
+ We have $\dom{U_0} \subseteq \naturals$.
+ We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}.
+ We have $\dom{U_0} = \{\zero, 1\}$.
+
+ It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.
+
+ It suffices to show that $\at{U_0}{\zero} \subseteq \at{U_0}{1}$.
+ Follows by \cref{one_in_reals,order_reals_lemma0,upair_elim,reals_one_bigger_zero,reals_order,reals_axiom_zero_in_reals,subseteq_refl,apply}.
+ \end{subproof}
$U_0$ is a urysohnchain of $X$.
-
+ %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain.
@@ -169,9 +179,7 @@
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
-\begin{proof}
- Follows by \cref{iff_sequence,codom_of_emptyset_can_be_anything,sequence,emptyset_is_function_on_emptyset,id_dom,in_irrefl,suc_subseteq_implies_in,emptyset_subseteq}.
-\end{proof}
+