summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-05 01:17:16 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-05 01:17:16 +0200
commite1d55f672b063f9347c0c9718ae5cdca9a370dba (patch)
tree09470283bace815ee1f0f3c9cbd7b77ed299455a
parent22e9ebe72c349514a1ee0ed37772ca8168eaf658 (diff)
working commit
-rw-r--r--library/topology/urysohn2.tex75
1 files changed, 49 insertions, 26 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index d08d507..93819dc 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -104,11 +104,31 @@
$\zero$ is an \in-minimal element of $\naturals$.
\end{proposition}
-\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
- For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
+\begin{proposition}\label{naturals_leq}
+ For all $n \in \naturals$ we have $\zero \leq n$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{naturals_leq_on_suc}
+ For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{x_in_seq_iff}
+ Suppose $n,m,x \in \naturals$.
+ $x \in \seq{n}{m}$ iff $n \leq x \leq m$.
+\end{proposition}
+
+\begin{proposition}\label{seq_zero_to_n_eq_to_suc_n}
+ For all $n \in \naturals$ we have $\seq{\zero}{n} = \suc{n}$.
\end{proposition}
\begin{proof} [Proof by \in-induction on $n$]
Assume $n \in \naturals$.
+ $n \in \naturals$.
For all $m \in n$ we have $m \in \naturals$.
\begin{byCase}
\caseOf{$n = \zero$.}
@@ -117,32 +137,35 @@
\caseOf{$n \neq \zero$.}
Take $k$ such that $k \in \naturals$ and $\suc{k} = n$.
Then $k \in n$.
- Therefore $\seq{\zero}{k}$ has cardinality $\suc{k}$.
- Now $\seq{\zero}{k}$ has cardinality $n$.
- Take $f$ such that $f$ is a bijection from $n$ to $\seq{\zero}{k}$.
- We have $\suc{n} = n \union \{n\}$.
- We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{\suc{k}\}$.
+ Therefore $\seq{\zero}{k} = \suc{k}$.
+ We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{n\}$.
\begin{subproof}
- We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{\suc{k}\}$.
+ We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{n\}$.
\begin{subproof}
- Omitted.
+ It suffices to show that for all $x \in \seq{\zero}{n}$ we have $x \in \seq{\zero}{k} \union \{n\}$.
+ $n \in \naturals$.
+ $\zero \leq n$.
+ $n \leq n$.
+ We have $n \in \seq{\zero}{n}$.
+ Therefore $\seq{\zero}{n}$ is inhabited.
+ Take $x$ such that $x \in \seq{\zero}{n}$.
+ Therefore $\zero \leq x \leq n$.
+ $x = n$ or $x < n$.
+ Then either $x = n$ or $x \leq k$.
+ Therefore $x \in \seq{\zero}{k}$ or $x = n$.
+ Follows by \cref{reals_order,natural_number_is_ordinal,ordinal_empty_or_emptyset_elem,naturals_leq_on_suc,reals_axiom_zero_in_reals,naturals_subseteq_reals,subseteq,union_intro_left,naturals_inductive_set,m_to_n_set,x_in_seq_iff,union_intro_right,singleton_intro}.
\end{subproof}
- We show that $\seq{\zero}{k} \union \{\suc{k}\} \subseteq \seq{\zero}{n}$.
+ We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$.
\begin{subproof}
- Omitted.
+ $k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}.
+ $k \in n$.
+ $\seq{\zero}{k} = k$ by \cref{}.
+ We have $\seq{\zero}{k} \subseteq \seq{\zero}{n}$.
+ $n \in \seq{\zero}{n}$.
\end{subproof}
- %$\seq{\zero}{k} \subseteq \seq{\zero}{n}$.
+ Trivial.
\end{subproof}
- We have $\{n\} \notin n$.
- We have $n \notmeets \{n\}$.
- Let $X = \suc{n}$.
- Let $Y = \seq{\zero}{n}$.
- Define $F : X \to Y$ such that $F(x) =$
- \begin{cases}
- &f(x) &\text{if} x \in n\\
- &\suc{k} &\text{if} x \in \{n\}
- \end{cases}
-
+ We have $\suc{n} = n \union \{n\}$.
\end{byCase}
%Assume $n$ is a natural number.
@@ -168,10 +191,10 @@
%\end{subproof}
\end{proof}
-%\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
-% For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
-%\end{proposition}
-%
+\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n}
+ For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
+\end{proposition}
+
\begin{proposition}\label{existence_normal_ordered_urysohn}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain of $X$.