summaryrefslogtreecommitdiff
path: root/library/algebra/magma.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/algebra/magma.tex
Initial commit
Diffstat (limited to 'library/algebra/magma.tex')
-rw-r--r--library/algebra/magma.tex100
1 files changed, 100 insertions, 0 deletions
diff --git a/library/algebra/magma.tex b/library/algebra/magma.tex
new file mode 100644
index 0000000..6f5ac04
--- /dev/null
+++ b/library/algebra/magma.tex
@@ -0,0 +1,100 @@
+\import{function.tex}
+
+\section{Magmas}
+
+\begin{struct}\label{magma}
+ A magma $A$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\mul$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{magma_welldef} for all $a, b\in \carrier[A]$ we have $\mul[A](a,b)\in \carrier[A]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{cdot}
+ $a\cdot b = \mul(a,b)$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{idempotentelement}
+ $a$ is an idempotent element of $A$ iff
+ $a\in\carrier[A]$ and
+ $\mul[A](a,a) = a$.
+\end{abbreviation}
+
+
+\begin{definition}\label{idempotents}
+ $\idempotents{A} = \{a\in\carrier[A]\mid \mul[A](a,a) = a\}$.
+\end{definition}
+
+%\begin{definition}\label{rightinternalorbit}
+% $\rightinternalorbit{a}{A} = \{\mul[A](a,a') \mid a'\in\carrier[A]\}$.
+%\end{definition}
+
+\begin{abbreviation}\label{commutes}
+ $a$ commutes with $b$ iff $a\cdot b = b\cdot a$.
+\end{abbreviation}
+
+\begin{definition}\label{submagma}
+ $A$ is a submagma of $B$ iff
+ $A$ is a magma and
+ $B$ is a magma and
+ $\carrier[A]\subseteq \carrier[B]$ and
+ $\mul[A]\subseteq \mul[B]$.
+\end{definition}
+
+\begin{proposition}\label{submagma_transitive}
+ Suppose $A$ is a submagma of $B$.
+ Suppose $B$ is a submagma of $C$.
+ Then $A$ is a submagma of $C$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{submagma,subseteq_transitive}.
+\end{proof}
+
+\begin{struct}\label{unitalmagma}
+ A unital magma $A$ is a magma equipped with
+ \begin{enumerate}
+ \item $\neutral$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{unitalmagma_type} $\neutral[A]\in \carrier[A]$.
+ \item\label{unitalmagma_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
+ \item\label{unitalmagma_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
+ \end{enumerate}
+\end{struct}
+
+\begin{proposition}\label{unitalmagma_mul_neutral_neutral}
+ Let $A$ be a unital magma.
+ Then $\mul(\neutral,\neutral) = \neutral$.
+\end{proposition}
+
+\begin{proposition}\label{unitalmagma_neutral_unique}
+ Let $A$ be a unital magma.
+ Let $e$ be a set such that $e\in A$ and for all $x\in A$ we have $\mul(x, e) = x = \mul(e, x)$.
+ Then $e = \neutral$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{unitalmagma_type,unitalmagma_left}.
+\end{proof}
+
+
+
+\begin{definition}[Left orbit]\label{left_orbit}
+ $\LeftOrb{x}{A} = \{\mul[A](a,x) \mid a\in\carrier[A] \}$.
+\end{definition}
+
+\begin{proposition}\label{eq_left_orbit_witness}
+ Let $A$ be a magma.
+ Let $e,f\in\carrier[A]$.
+ Suppose $\LeftOrb{e}{A} = \LeftOrb{f}{A}$.
+ Let $x\in\carrier[A]$.
+ Then there exists $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$.
+\end{proposition}
+\begin{proof}
+ We have $x\cdot e\in \LeftOrb{e}{A}$ by \cref{left_orbit}.
+ Thus $x\cdot e\in\LeftOrb{f}{A}$ by assumption.
+ Take $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$ by \cref{left_orbit}.
+\end{proof}