diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
| commit | 442d732696ad431b84f6e5c72b6ee785be4fd968 (patch) | |
| tree | b476f395e7e91d67bacb6758bc84914b8711593f /library/algebra/magma.tex | |
Initial commit
Diffstat (limited to 'library/algebra/magma.tex')
| -rw-r--r-- | library/algebra/magma.tex | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/library/algebra/magma.tex b/library/algebra/magma.tex new file mode 100644 index 0000000..6f5ac04 --- /dev/null +++ b/library/algebra/magma.tex @@ -0,0 +1,100 @@ +\import{function.tex} + +\section{Magmas} + +\begin{struct}\label{magma} + A magma $A$ is a onesorted structure equipped with + \begin{enumerate} + \item $\mul$ + \end{enumerate} + such that + \begin{enumerate} + \item\label{magma_welldef} for all $a, b\in \carrier[A]$ we have $\mul[A](a,b)\in \carrier[A]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{cdot} + $a\cdot b = \mul(a,b)$. +\end{abbreviation} + +\begin{abbreviation}\label{idempotentelement} + $a$ is an idempotent element of $A$ iff + $a\in\carrier[A]$ and + $\mul[A](a,a) = a$. +\end{abbreviation} + + +\begin{definition}\label{idempotents} + $\idempotents{A} = \{a\in\carrier[A]\mid \mul[A](a,a) = a\}$. +\end{definition} + +%\begin{definition}\label{rightinternalorbit} +% $\rightinternalorbit{a}{A} = \{\mul[A](a,a') \mid a'\in\carrier[A]\}$. +%\end{definition} + +\begin{abbreviation}\label{commutes} + $a$ commutes with $b$ iff $a\cdot b = b\cdot a$. +\end{abbreviation} + +\begin{definition}\label{submagma} + $A$ is a submagma of $B$ iff + $A$ is a magma and + $B$ is a magma and + $\carrier[A]\subseteq \carrier[B]$ and + $\mul[A]\subseteq \mul[B]$. +\end{definition} + +\begin{proposition}\label{submagma_transitive} + Suppose $A$ is a submagma of $B$. + Suppose $B$ is a submagma of $C$. + Then $A$ is a submagma of $C$. +\end{proposition} +\begin{proof} + Follows by \cref{submagma,subseteq_transitive}. +\end{proof} + +\begin{struct}\label{unitalmagma} + A unital magma $A$ is a magma equipped with + \begin{enumerate} + \item $\neutral$ + \end{enumerate} + such that + \begin{enumerate} + \item\label{unitalmagma_type} $\neutral[A]\in \carrier[A]$. + \item\label{unitalmagma_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. + \item\label{unitalmagma_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. + \end{enumerate} +\end{struct} + +\begin{proposition}\label{unitalmagma_mul_neutral_neutral} + Let $A$ be a unital magma. + Then $\mul(\neutral,\neutral) = \neutral$. +\end{proposition} + +\begin{proposition}\label{unitalmagma_neutral_unique} + Let $A$ be a unital magma. + Let $e$ be a set such that $e\in A$ and for all $x\in A$ we have $\mul(x, e) = x = \mul(e, x)$. + Then $e = \neutral$. +\end{proposition} +\begin{proof} + Follows by \cref{unitalmagma_type,unitalmagma_left}. +\end{proof} + + + +\begin{definition}[Left orbit]\label{left_orbit} + $\LeftOrb{x}{A} = \{\mul[A](a,x) \mid a\in\carrier[A] \}$. +\end{definition} + +\begin{proposition}\label{eq_left_orbit_witness} + Let $A$ be a magma. + Let $e,f\in\carrier[A]$. + Suppose $\LeftOrb{e}{A} = \LeftOrb{f}{A}$. + Let $x\in\carrier[A]$. + Then there exists $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$. +\end{proposition} +\begin{proof} + We have $x\cdot e\in \LeftOrb{e}{A}$ by \cref{left_orbit}. + Thus $x\cdot e\in\LeftOrb{f}{A}$ by assumption. + Take $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$ by \cref{left_orbit}. +\end{proof} |
