diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-11 13:37:03 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-11 13:37:03 +0200 |
| commit | 15deff4df111d86c84d808f1c9cc4e30013287d0 (patch) | |
| tree | bddc6a2389a8fb5b3c8d39898e992d184105e2fa /library/algebra | |
| parent | 4b2076e6016901cf55ba20cf68b344473ca26f56 (diff) | |
Formalisation of groups and monoids
The test.tex file was deleted and all formalisations of groups and monoids was moved to the fitting document of the library. Some proof steps of the new formalisation were optimized for proof time
Diffstat (limited to 'library/algebra')
| -rw-r--r-- | library/algebra/group.tex | 83 | ||||
| -rw-r--r-- | library/algebra/monoid.tex | 19 |
2 files changed, 101 insertions, 1 deletions
diff --git a/library/algebra/group.tex b/library/algebra/group.tex index 48934bd..a79bd2f 100644 --- a/library/algebra/group.tex +++ b/library/algebra/group.tex @@ -1 +1,82 @@ -\section{Groups} +\import{algebra/monoid.tex} +\section{Group} + +\begin{struct}\label{group} + A group $G$ is a monoid such that + \begin{enumerate} + \item\label{group_inverse} for all $g \in \carrier[G]$ there exist $h \in \carrier[G]$ such that $\mul[G](g, h) =\neutral[G]$. + \end{enumerate} +\end{struct} + +\begin{corollary}\label{group_implies_monoid} + Let $G$ be a group. Then $G$ is a monoid. +\end{corollary} + +\begin{abbreviation}\label{cfourdot} + $g \cdot h = \mul(g,h)$. +\end{abbreviation} + +\begin{lemma}\label{neutral_is_idempotent} + Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$. +\end{lemma} + +\begin{lemma}\label{group_divison_right} + Let $G$ be a group. Let $a,b,c \in G$. + Then $a \cdot c = b \cdot c$ iff $a = b$. +\end{lemma} +\begin{proof} + Take $a,b,c \in G$ such that $a \cdot c = b \cdot c$. + There exist $c' \in G$ such that $c \cdot c' = \neutral[G]$. + Therefore $a \cdot c = b \cdot c$ iff $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$. + \begin{align*} + (a \cdot c) \cdot c' + &= a \cdot (c \cdot c') + \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\ + &= a \cdot \neutral[G] + \explanation{by \cref{group_inverse}}\\ + &= a + \explanation{by \cref{group_implies_monoid,monoid_right}} + \end{align*} + \begin{align*} + (b \cdot c) \cdot c' + &= b \cdot (c \cdot c') + \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\ + &= b \cdot \neutral[G] + \explanation{by \cref{group_inverse}}\\ + &= b + \explanation{by \cref{group_implies_monoid,monoid_right}} + \end{align*} + $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$ iff $a \cdot c = b \cdot c$ by assumption. + $a = b$ iff $a \cdot c = b \cdot c$ by assumption. +\end{proof} + + +\begin{proposition}\label{leftinverse_eq_rightinverse} + Let $G$ be a group and assume $a \in G$. + Then there exist $b\in G$ + such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$. +\end{proposition} +\begin{proof} + There exist $b \in G$ such that $a \cdot b = \neutral[G]$. + There exist $c \in G$ such that $b \cdot c = \neutral[G]$. + $a \cdot b = \neutral[G]$. + $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$. + $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. + $a \cdot \neutral[G] = \neutral[G] \cdot c$. + $c = c \cdot \neutral[G]$. + $c = \neutral[G] \cdot c$. + $a \cdot \neutral[G] = c \cdot \neutral[G]$. + $a \cdot \neutral[G] = c$ by \cref{monoid_right,group_divison_right}. + $a = c$ by \cref{monoid_right,group_divison_right,neutral_is_idempotent}. + $b \cdot a = b \cdot c$. + $b \cdot a = \neutral[G]$. +\end{proof} + +\begin{definition}\label{group_abelian} + $G$ is an abelian group iff $G$ is a group and for all $g,h \in G$ $\mul[G](g,h) = \mul[G](h,g)$. +\end{definition} + + +\begin{definition}\label{group_automorphism} + Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$. +\end{definition} diff --git a/library/algebra/monoid.tex b/library/algebra/monoid.tex new file mode 100644 index 0000000..06fcb50 --- /dev/null +++ b/library/algebra/monoid.tex @@ -0,0 +1,19 @@ +\import{algebra/semigroup.tex} +\section{Monoid} + +\begin{struct}\label{monoid} + A monoid $A$ is a semigroup equipped with + \begin{enumerate} + \item $\neutral$ + \end{enumerate} + such that + \begin{enumerate} + \item\label{monoid_type} $\neutral[A]\in \carrier[A]$. + \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. + \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. + \end{enumerate} +\end{struct} + +\begin{corollary}\label{monoid_implies_semigroup} + Let $A$ be a monoid. Then $A$ is a semigroup. +\end{corollary}
\ No newline at end of file |
