diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2025-07-08 22:30:42 +0200 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2025-07-08 22:30:42 +0200 |
| commit | 8cda32fda857d9242eb42d4fb5774e6869525476 (patch) | |
| tree | 1d0cf69774df64985d95af88a81e883ac6eac5bc /library/function.tex | |
| parent | da6d425281534407a92ce18a22584905a7847a39 (diff) | |
Revert function changes
Diffstat (limited to 'library/function.tex')
| -rw-r--r-- | library/function.tex | 11 |
1 files changed, 4 insertions, 7 deletions
diff --git a/library/function.tex b/library/function.tex index 7616593..f74acbf 100644 --- a/library/function.tex +++ b/library/function.tex @@ -118,7 +118,7 @@ \end{proof} \begin{definition}\label{funs} - $\funs{A}{B} = \{ f\in\rels{A}{B}\mid \text{$A\subseteq \dom{f}$ and $f$ is right-unique}\}$. + $\funs{A}{B} = \{ f\in\rels{A}{B}\mid \text{$A= \dom{f}$ and $f$ is right-unique}\}$. \end{definition} \begin{abbreviation}\label{function_from_to} @@ -159,7 +159,7 @@ \begin{proposition}\label{funs_elim} Let $f\in\funs{A}{B}$. - Then $f$ is a function to $B$ such that $A\subseteq \dom{f}$. + Then $f$ is a function to $B$ such that $A= \dom{f}$. \end{proposition} \begin{proof} $f$ is a function by \cref{funs_is_function}. % and in particular, a relation. @@ -187,8 +187,7 @@ Then $f(a)\in B$. \end{proposition} \begin{proof} - $a\in\dom{f}$ by \cref{funs_elim,subseteq}. - $(a,f(a)) \in f$ by \cref{function_apply_iff}. + $(a,f(a)) \in f$ by \cref{funs_elim,function_apply_iff}. Thus $f(a)\in B$ by \cref{funs,rels_type_ran}. \end{proof} @@ -198,8 +197,7 @@ Then there exists $b\in B$ such that $(a,b)\in f$. \end{proposition} \begin{proof} - $a\in\dom{f}$ by \cref{funs_elim,subseteq}. - $(a,f(a)) \in f$ by \cref{function_apply_iff}. + $(a,f(a)) \in f$ by \cref{funs_elim,function_apply_iff}. $f(a)\in B$ by \cref{funs_type_apply}. \end{proof} @@ -556,7 +554,6 @@ there exists $a\in\dom{f}$ such that $f(a) = b$ by \cref{fun_ran_iff}. Fix $b\in B$. Take $a\in A$ such that $f(a) = b$ by \cref{surj}. - Then $\dom{f} = A$ by \cref{surj,funs_elim}. \end{proof} \begin{corollary}\label{funs_surj_iff} |
