diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-30 12:26:13 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-30 12:26:13 +0200 |
| commit | cfd5061ced34f061e84ecca2a266f8f4cd01ce36 (patch) | |
| tree | 2298a5c7ab0f64e97abbdc0ab2d9635720de30c8 /library/nat.tex | |
| parent | 6eea98cf3e66a07251e6370ea948898799d5055b (diff) | |
Adding the first formalisation of reals
Diffstat (limited to 'library/nat.tex')
| -rw-r--r-- | library/nat.tex | 41 |
1 files changed, 23 insertions, 18 deletions
diff --git a/library/nat.tex b/library/nat.tex index 849c610..ac9a141 100644 --- a/library/nat.tex +++ b/library/nat.tex @@ -24,34 +24,39 @@ $\emptyset\in\naturals$. \end{lemma} -%\begin{abbreviation}\label{zero_is_emptyset} -% $0 = \emptyset$. -%\end{abbreviation} +\begin{signature}\label{addition_is_set} + $x+y$ is a set. +\end{signature} + +\begin{axiom}\label{addition_on_naturals} + $x+y$ is a natural number iff $x$ is a natural number and $y$ is a natural number. +\end{axiom} + +\begin{abbreviation}\label{zero_is_emptyset} + $\zero = \emptyset$. +\end{abbreviation} + +\begin{axiom}\label{addition_axiom_1} + For all $x \in \naturals$ $x + \zero = \zero + x = x$. +\end{axiom} + +\begin{axiom}\label{addition_axiom_2} + For all $x, y \in \naturals$ $x + \suc{y} = \suc{x} + y = \suc{x+y}$. +\end{axiom} + +\begin{lemma}\label{naturals_is_equal_to_two_times_naturals} + $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. +\end{lemma} -%\begin{definition}\label{additionpair} -% $x$ is an Additionpair iff $x \in ((\naturals\times \naturals)\times \naturals)$. -%\end{definition} -%\begin{lemma}\label{zero_is_in_naturals} -% Let $n\in \naturals$. $((n, \emptyset), n)$ is an Additionpair. -%\end{lemma} -%\begin{definition}\label{valid_additionpair} -% $x$ is a vaildaddition iff there exist $n \in \naturals$ we have $x = ((0, n), n)$. -%\end{definition} -\begin{axiom}\label{addpair_set} - $\addpair$ is a set. -\end{axiom} -\begin{axiom}\label{addition_naturals} - $x \in \addpair$ iff $x \in ((\naturals\times \naturals)\times \naturals)$ and there exist $n \in \naturals$ such that $x = ((n, \emptyset), n)$. -\end{axiom} |
