summaryrefslogtreecommitdiff
path: root/library/numbers.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 18:08:04 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 18:08:04 +0200
commit08019dcdaf3b13bb8ce554dfd5377690bb508c6d (patch)
tree17bd858a29de72725bbb863d3bc0027918e1fa4a /library/numbers.tex
parentaeef2bd2dfc7e1a7f1865ee5455e934d9dedaa32 (diff)
formalisation mertic optimized
Diffstat (limited to 'library/numbers.tex')
-rw-r--r--library/numbers.tex18
1 files changed, 11 insertions, 7 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index df47d81..a0e2211 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -10,7 +10,7 @@
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden.
%< für die relation benutzen.
-
+% sup und inf einfügen
\begin{signature}
$\reals$ is a set.
@@ -92,7 +92,7 @@
\begin{axiom}\label{reals_axiom_mul_invers}
- For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
+ For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$.
\end{axiom}
\begin{axiom}\label{reals_axiom_disstro1}
@@ -107,7 +107,10 @@
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
-
+\begin{axiom}\label{reals_axiom_dedekind_complete}
+ For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
+ such that $x < z < y$.
+\end{axiom}
\begin{lemma}\label{order_reals_lemma1}
@@ -129,14 +132,15 @@
then $(x \times z) < (x \times y)$.
\end{lemma}
-\begin{lemma}\label{a}
+\begin{lemma}\label{o4rder_reals_lemma}
For all $x,y \in \reals$ if $x > y$ then $x \geq y$.
\end{lemma}
-\begin{lemma}\label{aa}
+\begin{lemma}\label{order_reals_lemma5}
For all $x,y \in \reals$ if $x < y$ then $x \leq y$.
\end{lemma}
-\begin{lemma}\label{aaa}
+\begin{lemma}\label{order_reals_lemma6}
For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
-\end{lemma} \ No newline at end of file
+\end{lemma}
+