diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-07 15:28:45 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-07 15:28:45 +0200 |
| commit | 6129ebdf0d8549f3e4d23aa771f2c06020182b7e (patch) | |
| tree | 591d5644fb518e51ab45657446afbf89b4f51a96 /library/numbers.tex | |
| parent | cbac8ca4a5bf8ff38af3e512956ea1e468965194 (diff) | |
Created first urysohn formalization
Diffstat (limited to 'library/numbers.tex')
| -rw-r--r-- | library/numbers.tex | 131 |
1 files changed, 74 insertions, 57 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index 0bfae2d..7d1b058 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -348,6 +348,9 @@ We seen before that we can proof the common behavior of the naturals. Since we now want to get furhter in a more efficient way, we introduce the basis axioms of the reals. Such that we can introduce the integers and raitionals as smooth as possible. + + +The operations Multiplication and addition is closed in the reals \begin{axiom}\label{reals_rmul} For all $n,m \in \reals$ we have $(n \rmul m) \in \reals$. \end{axiom} @@ -358,10 +361,16 @@ Such that we can introduce the integers and raitionals as smooth as possible. + +Commutivatiy of the standart operations \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} + + + +Existence of one and Zero \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} @@ -370,6 +379,9 @@ Such that we can introduce the integers and raitionals as smooth as possible. For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} + + +The Existence of Inverse of both operations \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} @@ -378,6 +390,9 @@ Such that we can introduce the integers and raitionals as smooth as possible. For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} + + +Disstrubitiv Laws of the reals \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. \end{axiom} @@ -386,10 +401,9 @@ Such that we can introduce the integers and raitionals as smooth as possible. For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{axiom} -\begin{axiom}\label{reals_reducion_on_addition} - For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. -\end{axiom} + +Definition of the order symbols \begin{abbreviation}\label{rless} $x < y$ iff $x \rless y$. \end{abbreviation} @@ -406,50 +420,50 @@ Such that we can introduce the integers and raitionals as smooth as possible. $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} + + +Laws of the order on the reals \begin{abbreviation}\label{is_positiv} $x$ is positiv iff $x > \zero$. \end{abbreviation} - - - - -\begin{axiom}\label{tarski1} +\begin{axiom}\label{reals_order} For all $x,y \in \reals$ we have if $x < y$ then $\lnot y < x$. \end{axiom} -\begin{axiom}\label{tarski2} +\begin{axiom}\label{reals_dense} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} -\begin{axiom}\label{tarski3} +\begin{axiom}\label{reals_is_eta_zero_set} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} -\begin{axiom}\label{tarski4} - For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. +\begin{axiom}\label{reals_one_bigger_zero} + $\zero < 1$. \end{axiom} -\begin{axiom}\label{tarski5} - For all $x,y \in \reals$ we have there exist $z \in \reals$ such that $x + z = y$. +\begin{axiom}\label{reals_order_behavior_with_addition} + For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$. \end{axiom} - -\begin{axiom}\label{tarski8} - $\zero < 1$. +\begin{axiom}\label{reals_postiv_mul_is_positiv} + For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$. \end{axiom} -\begin{axiom}\label{labelordersossss} - For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$. +\begin{axiom}\label{reals_postiv_mul_negativ_is_negativ} + For all $x,y \in \reals$ such that $x < \zero < y$ we have $(x \rmul y) < \zero$. \end{axiom} -\begin{axiom}\label{nocheinschoeneslabel} - For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$. +\begin{axiom}\label{reals_negativ_mul_is_negativ} + For all $x,y \in \reals$ such that $x,y < \zero$ we have $\zero < (x \rmul y)$. \end{axiom} + + \subsection{The Intergers} @@ -480,10 +494,11 @@ Such that we can introduce the integers and raitionals as smooth as possible. For all $r \in \reals$ we have $\neg{\neg{r}} = r$. \end{proposition} \begin{proof} - Fix $r \in \reals$. - $r + \neg{r} = \zero$. - $\neg{r} + \neg{\neg{r}} = \zero$. - Follows by \cref{reals_reducion_on_addition,neg,reals_axiom_kommu}. + Omitted. +% Fix $r \in \reals$. +% $r + \neg{r} = \zero$. +% $\neg{r} + \neg{\neg{r}} = \zero$. +% Follows by \cref{neg,reals_axiom_kommu}. \end{proof} \begin{definition}\label{integers} @@ -511,22 +526,6 @@ Such that we can introduce the integers and raitionals as smooth as possible. -\begin{proposition}\label{integers_negativ_times_negativ_is_positiv} - Suppose $n,m \in \integers$. - Suppose $n < \zero$ and $m < \zero$. - Then $n \rmul m > \zero$. -\end{proposition} -\begin{proof} - Omitted. - %$n \neq \zero$ and $m \neq \zero$. - %For all $k \in \naturals$ we have $k = \zero \lor k > \zero$. - %There exists $n' \in \reals$ such that $n' + n = \zero$. - %There exists $m' \in \reals$ such that $m' + m = \zero$. -\end{proof} - -%TODO: negativ * negativ = positiv. - - \subsection{The Rationals} \begin{axiom}\label{invers_reals} @@ -542,7 +541,7 @@ Such that we can introduce the integers and raitionals as smooth as possible. \end{abbreviation} \begin{definition}\label{rationals} %TODO: Vielleicht ist hier die definition das alle inversen von den ganzenzahlen und die ganzenzahlen selbst die rationalen zahlen erzeugen - $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \naturalsPlus. q = \rfrac{z}{n} \}$. + $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in (\integers \setminus \{\zero\}). q = \rfrac{z}{n} \}$. \end{definition} \begin{abbreviation}\label{nominator} @@ -553,23 +552,41 @@ Such that we can introduce the integers and raitionals as smooth as possible. $n$ is denominator of $q$ iff there exists $z \in \integers$ such that $q = \rfrac{z}{n}$. \end{abbreviation} -%\begin{proposition}\label{q_is_less_then_p_if_denominator_is_bigger_and_nominator_is_equal} -% Suppose $p,q \in \rationals$. -% Suppose $z \in \naturals$. -% Suppose $p$ is positiv. -% Suppose $q$ is positiv. -% Suppose $z$ is nominator of $p$. -% Suppose $z$ is nominator of $p$. -% Suppose $p'$ is denominator of $p$. -% Suppose $q'$ is denominator of $q$. -% Then $p \leq q$ iff $p' \geq q'$. -%\end{proposition} +\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one} + For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$. +\end{theorem} +\begin{proof} + Omitted. +\end{proof} +\begin{lemma}\label{fraction_kuerzung} %TODO: Englischen namen rausfinden + For all $n,m,k \in \reals$ we have $\rfrac{n \rmul k}{m \rmul k} = \rfrac{n}{m}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} -%\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one} -% For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$. -%\end{theorem} +\begin{lemma}\label{fraction_swap} + For all $n,m,k,l \in \reals$ we have $\rfrac{\rfrac{n}{m}}{\rfrac{k}{l}}=\rfrac{n \rmul l}{m \rmul k}$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} +\begin{definition}\label{divisor} + $g$ is a integral divisor of $a$ iff $g \in \naturals$ and there exist $b \in \integers$ such that $g \rmul b = a$. +\end{definition} + + + + +%\begin{abbreviation}\label{gcd} +% $g$ is greatest common divisor of $\{a,b\}$ iff +% $g$ is a integral divisor of $a$ +% and $g$ is a integral divisor of $b$ +% and for all $g'$ such that $g'$ is a integral divisor of $a$ +% and $g'$ is a integral divisor of $b$ we have $g' \leq g$. +%\end{abbreviation} % TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung, @@ -652,7 +669,7 @@ Such that we can introduce the integers and raitionals as smooth as possible. \begin{lemma}\label{order_reals_lemma3} Let $x,y,z \in \reals$. - Suppose $\zero < x$. + Suppose $\zero > x$. Suppose $y < z$. Then $(x \rmul z) < (x \rmul y)$. \end{lemma} |
