diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-23 03:14:06 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-09-23 03:14:06 +0200 |
| commit | 8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (patch) | |
| tree | 9848da3e57979a5a7e14ec99ee103cfa079e6fcb /library/ordinal.tex | |
| parent | 18c79bcb98fb376f15b2b3e00972530df61b26a9 (diff) | |
| parent | f6b22fd533bd61e9dbcb6374295df321de99b1f2 (diff) | |
Abgabe
Submission of Formalisation
Diffstat (limited to 'library/ordinal.tex')
| -rw-r--r-- | library/ordinal.tex | 107 |
1 files changed, 54 insertions, 53 deletions
diff --git a/library/ordinal.tex b/library/ordinal.tex index 3063162..6f924c1 100644 --- a/library/ordinal.tex +++ b/library/ordinal.tex @@ -3,7 +3,7 @@ \import{set/powerset.tex} \import{set/regularity.tex} \import{set/suc.tex} -\import{nat.tex} +%\import{nat.tex} \section{Transitive sets} @@ -584,55 +584,56 @@ Then $\alpha\subseteq\beta$. Follows by \cref{subseteq_antisymmetric}. \end{proof} - -\subsection{Natural numbers as ordinals} - -\begin{lemma}\label{nat_is_successor_ordinal} - Let $n\in\naturals$. - Suppose $n\neq \emptyset$. - Then $n$ is a successor ordinal. -\end{lemma} -\begin{proof} - Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. - $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. - Now $M\subseteq \naturals\subseteq M$ - by \cref{subseteq,naturals_smallest_inductive_set}. - Thus $M = \naturals$. - Follows by \cref{subseteq}. -\end{proof} - -\begin{lemma}\label{nat_is_transitiveset} - $\naturals$ is \in-transitive. -\end{lemma} -\begin{proof} - Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. - $\emptyset\in M$. - For all $n\in M$ we have $\suc{n}\in M$ - by \cref{naturals_inductive_set,suc}. - Thus $M$ is an inductive set. - Now $M\subseteq \naturals\subseteq M$ - by \cref{subseteq,naturals_smallest_inductive_set}. - Hence $\naturals = M$. -\end{proof} - -\begin{lemma}\label{natural_number_is_ordinal} - Every natural number is an ordinal. -\end{lemma} -\begin{proof} - Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. -\end{proof} - -\begin{lemma}\label{omega_is_an_ordinal} - $\naturals$ is an ordinal. -\end{lemma} -\begin{proof} - Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. -\end{proof} - -\begin{lemma}\label{omega_is_a_limit_ordinal} - $\naturals$ is a limit ordinal. -\end{lemma} -\begin{proof} - $\emptyset\precedes \naturals$. - If $n\in \naturals$, then $\suc{n}\in\naturals$. -\end{proof} +% +%\subsection{Natural numbers as ordinals} +% +%\begin{lemma}\label{nat_is_successor_ordinal} +% Let $n\in\naturals$. +% Suppose $n\neq \emptyset$. +% Then $n$ is a successor ordinal. +%\end{lemma} +%\begin{proof} +% Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. +% $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. +% Now $M\subseteq \naturals\subseteq M$ +% by \cref{subseteq,naturals_smallest_inductive_set}. +% Thus $M = \naturals$. +% Follows by \cref{subseteq}. +%\end{proof} +% +%\begin{lemma}\label{nat_is_transitiveset} +% $\naturals$ is \in-transitive. +%\end{lemma} +%\begin{proof} +% Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. +% $\emptyset\in M$. +% For all $n\in M$ we have $\suc{n}\in M$ +% by \cref{naturals_inductive_set,suc}. +% Thus $M$ is an inductive set. +% Now $M\subseteq \naturals\subseteq M$ +% by \cref{subseteq,naturals_smallest_inductive_set}. +% Hence $\naturals = M$. +%\end{proof} +% +%\begin{lemma}\label{natural_number_is_ordinal} +% Every natural number is an ordinal. +%\end{lemma} +%\begin{proof} +% Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. +%\end{proof} +% +%\begin{lemma}\label{omega_is_an_ordinal} +% $\naturals$ is an ordinal. +%\end{lemma} +%\begin{proof} +% Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. +%\end{proof} +% +%\begin{lemma}\label{omega_is_a_limit_ordinal} +% $\naturals$ is a limit ordinal. +%\end{lemma} +%\begin{proof} +% $\emptyset\precedes \naturals$. +% If $n\in \naturals$, then $\suc{n}\in\naturals$. +%\end{proof} +%
\ No newline at end of file |
