summaryrefslogtreecommitdiff
path: root/library/ordinal.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-07-02 21:24:44 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-07-02 21:24:44 +0200
commitbff76c7fabb9f2c0b9dcac915dfa68e930baf4d4 (patch)
tree9f893b4e9adc2fd68ce379b36deff7f468c7ea7a /library/ordinal.tex
parent7e65d40f100af326adbd4ef1d32fdd0aabc92f4b (diff)
Further Formalisation of naturals.
Such as induction on naturals and addition laws.
Diffstat (limited to 'library/ordinal.tex')
-rw-r--r--library/ordinal.tex107
1 files changed, 54 insertions, 53 deletions
diff --git a/library/ordinal.tex b/library/ordinal.tex
index 3063162..6f924c1 100644
--- a/library/ordinal.tex
+++ b/library/ordinal.tex
@@ -3,7 +3,7 @@
\import{set/powerset.tex}
\import{set/regularity.tex}
\import{set/suc.tex}
-\import{nat.tex}
+%\import{nat.tex}
\section{Transitive sets}
@@ -584,55 +584,56 @@ Then $\alpha\subseteq\beta$.
Follows by \cref{subseteq_antisymmetric}.
\end{proof}
-
-\subsection{Natural numbers as ordinals}
-
-\begin{lemma}\label{nat_is_successor_ordinal}
- Let $n\in\naturals$.
- Suppose $n\neq \emptyset$.
- Then $n$ is a successor ordinal.
-\end{lemma}
-\begin{proof}
- Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$.
- $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}.
- Now $M\subseteq \naturals\subseteq M$
- by \cref{subseteq,naturals_smallest_inductive_set}.
- Thus $M = \naturals$.
- Follows by \cref{subseteq}.
-\end{proof}
-
-\begin{lemma}\label{nat_is_transitiveset}
- $\naturals$ is \in-transitive.
-\end{lemma}
-\begin{proof}
- Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$.
- $\emptyset\in M$.
- For all $n\in M$ we have $\suc{n}\in M$
- by \cref{naturals_inductive_set,suc}.
- Thus $M$ is an inductive set.
- Now $M\subseteq \naturals\subseteq M$
- by \cref{subseteq,naturals_smallest_inductive_set}.
- Hence $\naturals = M$.
-\end{proof}
-
-\begin{lemma}\label{natural_number_is_ordinal}
- Every natural number is an ordinal.
-\end{lemma}
-\begin{proof}
- Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}.
-\end{proof}
-
-\begin{lemma}\label{omega_is_an_ordinal}
- $\naturals$ is an ordinal.
-\end{lemma}
-\begin{proof}
- Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}.
-\end{proof}
-
-\begin{lemma}\label{omega_is_a_limit_ordinal}
- $\naturals$ is a limit ordinal.
-\end{lemma}
-\begin{proof}
- $\emptyset\precedes \naturals$.
- If $n\in \naturals$, then $\suc{n}\in\naturals$.
-\end{proof}
+%
+%\subsection{Natural numbers as ordinals}
+%
+%\begin{lemma}\label{nat_is_successor_ordinal}
+% Let $n\in\naturals$.
+% Suppose $n\neq \emptyset$.
+% Then $n$ is a successor ordinal.
+%\end{lemma}
+%\begin{proof}
+% Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$.
+% $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}.
+% Now $M\subseteq \naturals\subseteq M$
+% by \cref{subseteq,naturals_smallest_inductive_set}.
+% Thus $M = \naturals$.
+% Follows by \cref{subseteq}.
+%\end{proof}
+%
+%\begin{lemma}\label{nat_is_transitiveset}
+% $\naturals$ is \in-transitive.
+%\end{lemma}
+%\begin{proof}
+% Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$.
+% $\emptyset\in M$.
+% For all $n\in M$ we have $\suc{n}\in M$
+% by \cref{naturals_inductive_set,suc}.
+% Thus $M$ is an inductive set.
+% Now $M\subseteq \naturals\subseteq M$
+% by \cref{subseteq,naturals_smallest_inductive_set}.
+% Hence $\naturals = M$.
+%\end{proof}
+%
+%\begin{lemma}\label{natural_number_is_ordinal}
+% Every natural number is an ordinal.
+%\end{lemma}
+%\begin{proof}
+% Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}.
+%\end{proof}
+%
+%\begin{lemma}\label{omega_is_an_ordinal}
+% $\naturals$ is an ordinal.
+%\end{lemma}
+%\begin{proof}
+% Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}.
+%\end{proof}
+%
+%\begin{lemma}\label{omega_is_a_limit_ordinal}
+% $\naturals$ is a limit ordinal.
+%\end{lemma}
+%\begin{proof}
+% $\emptyset\precedes \naturals$.
+% If $n\in \naturals$, then $\suc{n}\in\naturals$.
+%\end{proof}
+% \ No newline at end of file