summaryrefslogtreecommitdiff
path: root/library/relation/equivalence.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/relation/equivalence.tex
Initial commit
Diffstat (limited to 'library/relation/equivalence.tex')
-rw-r--r--library/relation/equivalence.tex271
1 files changed, 271 insertions, 0 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
new file mode 100644
index 0000000..bda8486
--- /dev/null
+++ b/library/relation/equivalence.tex
@@ -0,0 +1,271 @@
+\import{set.tex}
+\import{set/partition.tex}
+\import{relation.tex}
+\import{order/quasiorder.tex}
+
+
+\subsection{Equivalences}
+
+% Sometimes also called "restricted equivalence".
+\begin{abbreviation}\label{partialequivalence}
+ $E$ is a partial equivalence iff
+ $E$ is transitive and symmetric.
+\end{abbreviation}
+
+\begin{proposition}\label{partialequivalence_is_quasireflexive}
+ Let $E$ be a partial equivalence.
+ Then $E$ is quasireflexive.
+\end{proposition}
+
+\begin{abbreviation}\label{equivalence}
+ $E$ is an equivalence iff
+ $E$ is a symmetric quasiorder.
+\end{abbreviation}
+
+\begin{abbreviation}\label{equivalence_on}
+ $E$ is an equivalence on $A$ iff
+ $E$ is a symmetric quasiorder on $A$.
+\end{abbreviation}
+
+\begin{proposition}\label{inters_of_family_of_equivalences_is_equivalence}
+ Let $F$ be a family of relations.
+ Suppose every element of $F$ is an equivalence.
+ Then $\inters{F}$ is an equivalence.
+\end{proposition}
+\begin{proof}
+ $\inters{F}$ is quasireflexive by \cref{quasireflexive,inters_destr,inters_iff_forall}.
+ $\inters{F}$ is symmetric by \cref{symmetric,inters_iff_forall,inters_destr}.
+ $\inters{F}$ is transitive by \cref{transitive,inters_iff_forall,inters_destr}.
+\end{proof}
+
+\begin{proposition}\label{inters_of_family_of_equivalences_on_a_set_is_equivalence_on_that_set}
+ Let $F$ be an inhabited family of relations.
+ Suppose every element of $F$ is an equivalence on $A$.
+ Then $\inters{F}$ is an equivalence on $A$.
+\end{proposition}
+\begin{proof}
+ $\inters{F}$ is reflexive on $A$ by \cref{inters_of_family_of_reflexive_relations_is_reflexive}.
+ $\inters{F}$ is symmetric.
+ $\inters{F}$ is transitive.
+\end{proof}
+% NOTE: the union of a family of equivalence relations is not necessarily an
+% equivalence relation because a binary union of transitive relations is not
+% necessarily transitive.
+
+
+\subsubsection{Equivalence classes}
+
+\begin{abbreviation}\label{equiv_class}
+ $\equivalenceClass{E}{a} = \downward{E}{a}$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{equivclass_abbr}
+ The $E$-equivalence class of $a$ is $\equivalenceClass{E}{a}$.
+\end{abbreviation}
+
+\begin{proposition}\label{equivclasses_inhabited}
+ Let $E$ be an equivalence.
+ Let $a\in \fld{E}$.
+ Then $a\in\equivalenceClass{E}{a}$.
+\end{proposition}
+\begin{proof}
+ $a\mathrel{E} a$ by \cref{reflexive_on,quasireflexive_implies_reflexive_on_fld}.
+\end{proof}
+
+\begin{proposition}\label{equivclasses_inhabited_equivalenceon}
+ Let $E$ be an equivalence on $A$.
+ Let $a\in A$.
+ Then $a\in\equivalenceClass{E}{a}$.
+\end{proposition}
+\begin{proof}
+ $a\mathrel{E} a$ by \cref{reflexive_on}.
+\end{proof}
+
+\begin{proposition}\label{equiv_implies_equivanlence_classes_eq}
+ Let $E$ be an equivalence on $A$.
+ Let $a, b\in A$.
+ Suppose $a\mathrel{E} b$.
+ Then $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{equivclasses_eq_implies_equiv}
+ Let $E$ be an equivalence on $A$.
+ Let $a, b\in A$.
+ Suppose $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$.
+ Then $a\mathrel{E} b$.
+\end{proposition}
+
+\begin{proposition}\label{equiv_iff_equivclasses_eq}
+ Let $E$ be an equivalence on $A$.
+ Let $a, b\in A$.
+ Then $a\mathrel{E} b$ iff $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$.
+\end{proposition}
+
+\begin{proposition}\label{equivclasses_diseq_implies_disjoint}
+ Let $E$ be a partial equivalence.
+ Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$.
+ Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$.
+\end{proposition}
+\begin{proof}
+ Suppose not.
+ Take $c$ such that $c\in \equivalenceClass{E}{a},\equivalenceClass{E}{b}$.
+ Then $c\mathrel{E} a$ and
+ $c\mathrel{E} b$.
+ $E$ is symmetric.
+ Thus $a\mathrel{E} c$ by \hyperref[symmetric]{symmetry}.
+ $E$ is transitive.
+ Thus $a\mathrel{E} b$ by \hyperref[transitive]{transitivity}.
+ Then $b\mathrel{E} a$ by \hyperref[symmetric]{symmetry}.
+ %
+ Thus $a\in \equivalenceClass{E}{b}$ and $b\in \equivalenceClass{E}{a}$
+ by \cref{downward_closure_iff}.
+ Hence $\equivalenceClass{E}{a}\subseteq \equivalenceClass{E}{b}\subseteq \equivalenceClass{E}{a}$
+ by \cref{transitive_downward_subseteq}.
+ Contradiction by \cref{subseteq_antisymmetric}.
+\end{proof}
+
+\begin{corollary}\label{equivalence_equivclasses_diseq_implies_disjoint}
+ Let $E$ be an equivalence.
+ Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$.
+ Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$.
+\end{corollary}
+\begin{proof}
+ Follows by \cref{equivclasses_diseq_implies_disjoint}.
+\end{proof}
+
+\begin{corollary}\label{equivalenceon_equivclasses_diseq_implies_disjoint}
+ Let $E$ be an equivalence on $A$.
+ Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$.
+ Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$.
+\end{corollary}
+\begin{proof}
+ Follows by \cref{equivclasses_diseq_implies_disjoint}.
+\end{proof}
+
+
+\subsubsection{Quotients}
+
+\begin{definition}\label{quotient}
+ $\quotient{A}{E} = \{\equivalenceClass{E}{a}\mid a\in A\}$.
+\end{definition}
+
+%\begin{definition}\label{equivalenceclasses}
+% $\equivalenceClasses{E} = \{\equivalenceClass{E}{a}\mid a\in\dom{E}\}$.
+%\end{definition}
+
+\begin{proposition}\label{quotient_emptyset}
+ $\quotient{\emptyset}{\emptyset} = \emptyset$.
+\end{proposition}
+
+
+\begin{proposition}\label{quotient_elems_disjoint}
+ Let $E$ be an equivalence on $A$.
+ Suppose $B,C\in\quotient{A}{E}$ and $B\neq C$.
+ Then $B$ is disjoint from $C$.
+\end{proposition}
+\begin{proof}
+ Take $b$ such that $B = \equivalenceClass{E}{b}$.
+ Take $c$ such that $C = \equivalenceClass{E}{c}$.
+ Then $B$ is disjoint from $C$ by \cref{equivalenceon_equivclasses_diseq_implies_disjoint}.
+\end{proof}
+
+\begin{proposition}\label{quotient_elems_inhabited}
+ Let $E$ be an equivalence on $A$.
+ Suppose $C\in\quotient{A}{E}$.
+ Then $C$ is inhabited.
+\end{proposition}
+\begin{proof}
+ Take $a\in A$ such that $C = \equivalenceClass{E}{a}$.
+ Then $a\in \equivalenceClass{E}{a}$.
+ $C$ is inhabited by \cref{quotient,inhabited,equivclasses_inhabited}.
+\end{proof}
+
+\begin{proposition}\label{quotient_elems_type}
+ Let $E$ be an equivalence on $A$.
+ Suppose $a\in C\in\quotient{A}{E}$.
+ Then $a\in A$.
+\end{proposition}
+\begin{proof}
+ Take $b\in A$ such that $C = \equivalenceClass{E}{b}$
+ by \cref{quotient}.
+ Then $a\mathrel{E} b$.
+ Thus $a\in A$ by \cref{times_tuple_elim,subseteq}.
+\end{proof}
+
+
+\begin{corollary}\label{quotient_notni_emptyset}
+ Let $E$ be an equivalence on $A$.
+ $\emptyset\notin\quotient{A}{E}$.
+\end{corollary}
+
+\begin{proposition}\label{quotient_partition}
+ Let $E$ be an equivalence on $A$.
+ $\quotient{A}{E}$ is a partition.
+\end{proposition}
+\begin{proof}
+ $\emptyset\notin\quotient{A}{E}$.
+ For all $B, C\in \quotient{A}{E}$ such that $B\neq C$ we have $B$ is disjoint from $C$.
+\end{proof}
+
+\begin{proposition}\label{quotient_partition_of}
+ Let $E$ be an equivalence on $A$.
+ $\quotient{A}{E}$ is a partition of $A$.
+\end{proposition}
+\begin{proof}
+ $\unions{(\quotient{A}{E})} = A$ by set extensionality.
+\end{proof}
+
+
+
+\begin{definition}\label{equivalence_from_partition}
+ $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
+\end{definition}
+
+\begin{proposition}\label{equivalence_from_partition_intro}
+ Let $P$ be a partition of $A$.
+ Let $a,b\in A$.
+ Suppose $a,b\in C\in P$.
+ Then $a\mathrel{\equivfrompartition{P}} b$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_reflexive}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}$ is reflexive on $A$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_symmetric}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}$ is symmetric.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_partition_transitive}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}$ is transitive.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_is_equivalence}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}$ is an equivalence on $A$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_quotient}
+ Let $E$ be an equivalence on $A$.
+ Then $\equivfrompartition{\quotient{A}{E}} = E$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
+ Let $P$ be a partition of $A$.
+ Then $\quotient{A}{\equivfrompartition{P}} = P$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}