diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
| commit | 442d732696ad431b84f6e5c72b6ee785be4fd968 (patch) | |
| tree | b476f395e7e91d67bacb6758bc84914b8711593f /library/relation/uniqueness.tex | |
Initial commit
Diffstat (limited to 'library/relation/uniqueness.tex')
| -rw-r--r-- | library/relation/uniqueness.tex | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/library/relation/uniqueness.tex b/library/relation/uniqueness.tex new file mode 100644 index 0000000..68b01de --- /dev/null +++ b/library/relation/uniqueness.tex @@ -0,0 +1,81 @@ +\import{set.tex} +\import{relation.tex} + + +\subsection{Injective relations} + +% Injective relations are also called "left-unique" +\begin{definition}\label{injective} + $R$ is injective iff for all $a,a',b$ such that $a, a'\mathrel{R} b$ we have $a = a'$. +\end{definition} + +\begin{abbreviation}\label{leftunique} + $R$ is left-unique iff $R$ is injective. +\end{abbreviation} + +\begin{proposition}\label{subseteq_of_injective_is_injective} + Suppose $S\subseteq R$. + Suppose $R$ is injective. + Then $S$ is injective. +\end{proposition} + +\begin{proposition}\label{restrl_injective} + Suppose $R$ is injective. + Then $\restrl{R}{A}$ is injective. +\end{proposition} +\begin{proof} + $\restrl{R}{A}\subseteq R$. +\end{proof} + +\begin{proposition}\label{circ_injective} + Suppose $R$ and $S$ are injective. + Then $S\circ R$ is injective. +\end{proposition} + +\begin{proposition}\label{identity_injective} + Then $\identity{A}$ is injective. +\end{proposition} + +\subsection{Right-unique relations} + +% also called "functional" or "univalent" +\begin{definition}\label{rightunique} + $R$ is right-unique iff + for all $a,b,b'$ such that $a\mathrel{R} b, b'$ we have $b = b'$. +\end{definition} + +\begin{abbreviation}\label{onetoone} + $R$ is one-to-one iff $R$ is right-unique and injective. +\end{abbreviation} + +\begin{proposition}\label{subseteq_of_rightunique_is_rightunique} + Suppose $S\subseteq R$. + Suppose $R$ is right-unique. + Then $S$ is right-unique. +\end{proposition} + +\begin{proposition}\label{circ_rightunique} + Suppose $R$ and $S$ are right-unique. + Then $S\circ R$ is right-unique. +\end{proposition} + + + +\subsection{Left-total relations} + +\begin{definition}\label{lefttotal} + $R$ is left-total on $A$ iff + for all $a\in A$ there exists $b$ such that $a\mathrel{R} b$. +\end{definition} + + +\subsection{Right-total relations} + +\begin{definition}\label{righttotal} + $R$ is right-total on $B$ iff + for all $b\in B$ there exists $a$ such that $a\mathrel{R} b$. +\end{definition} + +\begin{abbreviation}\label{surjective} + $R$ is surjective on $B$ iff $R$ is right-total on $B$. +\end{abbreviation} |
