summaryrefslogtreecommitdiff
path: root/library/relation
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-23 03:14:06 +0200
committerGitHub <noreply@github.com>2024-09-23 03:14:06 +0200
commit8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (patch)
tree9848da3e57979a5a7e14ec99ee103cfa079e6fcb /library/relation
parent18c79bcb98fb376f15b2b3e00972530df61b26a9 (diff)
parentf6b22fd533bd61e9dbcb6374295df321de99b1f2 (diff)
Abgabe
Submission of Formalisation
Diffstat (limited to 'library/relation')
-rw-r--r--library/relation/equivalence.tex107
1 files changed, 56 insertions, 51 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
index 87f70af..0c5dbfa 100644
--- a/library/relation/equivalence.tex
+++ b/library/relation/equivalence.tex
@@ -219,54 +219,59 @@
\end{proof}
-%
-%\begin{definition}\label{equivalence_from_partition}
-% $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
-%\end{definition}
-%
-%\begin{proposition}\label{equivalence_from_partition_intro}
-% Let $P$ be a partition of $A$.
-% Let $a,b\in A$.
-% Suppose $a,b\in C\in P$.
-% Then $a\mathrel{\equivfrompartition{P}} b$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_reflexive}
-% Let $P$ be a partition of $A$.
-% $\equivfrompartition{P}$ is reflexive on $A$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_symmetric}
-% Let $P$ be a partition.
-% $\equivfrompartition{P}$ is symmetric.
-%\end{proposition}
-%\begin{proof}
-% Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
-%\end{proof}
-%
-%\begin{proposition}\label{equivalence_from_partition_transitive}
-% Let $P$ be a partition.
-% $\equivfrompartition{P}$ is transitive.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_is_equivalence}
-% Let $P$ be a partition of $A$.
-% $\equivfrompartition{P}$ is an equivalence on $A$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_quotient}
-% Let $E$ be an equivalence on $A$.
-% Then $\equivfrompartition{\quotient{A}{E}} = E$.
-%\end{proposition}
-%\begin{proof}
-% Follows by set extensionality.
-%\end{proof}
-%
-%\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
-% Let $P$ be a partition of $A$.
-% Then $\quotient{A}{\equivfrompartition{P}} = P$.
-%\end{proposition}
-%\begin{proof}
-% Follows by set extensionality.
-%\end{proof}
-% \ No newline at end of file
+
+\begin{definition}\label{equivalence_from_partition}
+ $\equivfrompartition{P}{A} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
+\end{definition}
+
+\begin{proposition}\label{equivalence_from_partition_intro}
+ Let $P$ be a partition of $A$.
+ Let $a,b\in A$.
+ Suppose $a,b\in C\in P$.
+ Then $a\mathrel{\equivfrompartition{P}{A}} b$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_reflexive}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}{A}$ is reflexive on $A$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_symmetric}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}{A}$ is symmetric.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_partition_transitive}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}{A}$ is transitive.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_partition_is_equivalence}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}{A}$ is an equivalence on $A$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_quotient}
+ Let $E$ be an equivalence on $A$.
+ Then $\equivfrompartition{\quotient{A}{E}}{A} = E$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
+ Let $P$ be a partition of $A$.
+ Then $\quotient{A}{\equivfrompartition{P}{A}} = P$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}