diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2024-02-10 02:22:14 +0100 |
| commit | 442d732696ad431b84f6e5c72b6ee785be4fd968 (patch) | |
| tree | b476f395e7e91d67bacb6758bc84914b8711593f /library/set/cons.tex | |
Initial commit
Diffstat (limited to 'library/set/cons.tex')
| -rw-r--r-- | library/set/cons.tex | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/library/set/cons.tex b/library/set/cons.tex new file mode 100644 index 0000000..e03ba4f --- /dev/null +++ b/library/set/cons.tex @@ -0,0 +1,112 @@ +\import{set.tex} + +\subsection{Additional results about cons} + +\begin{proposition}\label{cons_subseteq_intro} + Suppose $x\in X$. + Suppose $Y\subseteq X$. + Then $\cons{x}{Y}\subseteq X$. +\end{proposition} + +\begin{proposition}\label{cons_subseteq_elim} + Suppose $\cons{x}{Y}\subseteq X$. + Then $x\in X$ and $Y\subseteq X$. +\end{proposition} + +\begin{proposition}\label{cons_subseteq_iff} + $\cons{x}{Y}\subseteq X$ iff $x\in X$ and $Y\subseteq X$. +\end{proposition} + +\begin{proposition}\label{subseteq_cons_right} + If $C\subseteq B$, then $C\subseteq \cons{a}{B}$. +\end{proposition} + +\begin{corollary}\label{subseteq_cons_self} + $X\subseteq \cons{y}{X}$. +\end{corollary} + +\begin{abbreviation}\label{remove_point} + $\remove{a}{B} = B\setminus\{a\}$. +\end{abbreviation} + +\begin{proposition}\label{subseteq_cons_intro_left} + Suppose $a\in C \land \remove{a}{C} \subseteq B$. + Then $C\subseteq \cons{a}{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{setminus_cons,setminus_eq_emptyset_iff_subseteq}. +\end{proof} + +\begin{proposition}\label{subseteq_cons_intro_right} + Suppose $C \subseteq B$. + Then $C\subseteq \cons{a}{B}$. +\end{proposition} + +\begin{proposition}\label{subseteq_cons_elim} + Suppose $C\subseteq \cons{a}{B}$. + Then $C\subseteq B \lor (a\in C \land \remove{a}{C} \subseteq B)$. +\end{proposition} +\begin{proof} + Follows by \cref{setminus_cons,subseteq,cons_iff,setminus_eq_emptyset_iff_subseteq}. +\end{proof} + +\begin{proposition}\label{subseteq_cons_iff} + $C\subseteq \cons{a}{B}$ iff $C\subseteq B \lor (a\in C \land \remove{a}{C}\subseteq B)$. +\end{proposition} + + +\begin{proposition}\label{remove_point_eq_setminus_singleton} + $\remove{a}{B} = B\setminus\{a\}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + + +\begin{proposition}\label{union_eq_cons} + $\{a\}\union B = \cons{a}{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{cons_comm} + $\cons{a}{\cons{b}{C}} = \cons{b}{\cons{a}{C}}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{cons_absorb} + Suppose $a\in A$. + Then $\cons{a}{A} = A$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{cons_remove} + Suppose $a\in A$. + Then $\cons{a}{A\setminus\{a\}} = A$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{cons_idempotent} + Then $\cons{a}{\cons{a}{B}} = \cons{a}{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{inters_cons} + Suppose $B$ is inhabited. + Then $\inters{\cons{a}{B}} = a\inter\inters{B}$. +\end{proposition} +\begin{proof} + $\cons{a}{B}$ is inhabited. + Thus for all $c$ we have $c\in\inters{\cons{a}{B}}$ iff $c\in a\inter \inters{B}$ + by \cref{inters_iff_forall,cons_iff,inter}. + Follows by \hyperref[setext]{extensionality}. +\end{proof} |
