summaryrefslogtreecommitdiff
path: root/library/topology/continuous.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2025-07-02 20:28:22 +0200
committerGitHub <noreply@github.com>2025-07-02 20:28:22 +0200
commit793849dd0b20bc70ea0e0ecfd5008a3806eca0d9 (patch)
tree280949f358a695c5471212cc5b22950399d8cd57 /library/topology/continuous.tex
parent3caadfbe0fdb417b8edebc17002ddafe795a4bcc (diff)
parent8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (diff)
Merge pull request #2 from Simon-Kor/main
Merge (finally)
Diffstat (limited to 'library/topology/continuous.tex')
-rw-r--r--library/topology/continuous.tex41
1 files changed, 41 insertions, 0 deletions
diff --git a/library/topology/continuous.tex b/library/topology/continuous.tex
new file mode 100644
index 0000000..95c4d0a
--- /dev/null
+++ b/library/topology/continuous.tex
@@ -0,0 +1,41 @@
+\import{topology/topological-space.tex}
+\import{relation.tex}
+\import{function.tex}
+\import{set.tex}
+
+\subsection{Continuous}\label{form_sec_continuous}
+
+\begin{definition}\label{continuous}
+ $f$ is continuous iff for all $U \in \opens[Y]$ we have $\preimg{f}{U} \in \opens[X]$.
+\end{definition}
+
+\begin{proposition}\label{continuous_definition_by_closeds}
+ Let $X$ be a topological space.
+ Let $Y$ be a topological space.
+ Let $f \in \funs{X}{Y}$.
+ Then $f$ is continuous iff for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+ %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ such that $U \neq \emptyset$ we have $\preimg{f}{U} \in \closeds{X}$.
+ %\begin{subproof}
+ % Suppose $f$ is continuous.
+ % Fix $U \in \closeds{Y}$.
+ % $\carrier[Y] \setminus U$ is open in $Y$.
+ % Then $\preimg{f}{(\carrier[Y] \setminus U)}$ is open in $X$.
+ % Therefore $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ is closed in $X$.
+ % We show that $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$.
+ % \begin{subproof}
+ % It suffices to show that for all $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ we have $x \in \preimg{f}{U}$.
+ % Fix $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
+ % Take $y \in \carrier[Y]$ such that $f(x)=y$.
+ % It suffices to show that $y \in U$.
+ % \end{subproof}
+ % $\preimg{f}{U} \subseteq \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
+ %\end{subproof}
+ %We show that if for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$ then $f$ is continuous.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+\end{proof}
+