summaryrefslogtreecommitdiff
path: root/library/topology/order-topology.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-28 16:26:19 +0200
committerGitHub <noreply@github.com>2024-05-28 16:26:19 +0200
commita6a83d15a866d7ba40dfc6b733cea14314da3b25 (patch)
treef41fd89c9e4f40f70201546073c19bccf19afe60 /library/topology/order-topology.tex
parenta5deeef9c3214f0f2ccd90789f5344a88544d65b (diff)
parentecfb1a66f2159e078199e54edf8a80004c28195a (diff)
Merge branch 'main' into main
Diffstat (limited to 'library/topology/order-topology.tex')
-rw-r--r--library/topology/order-topology.tex33
1 files changed, 33 insertions, 0 deletions
diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex
new file mode 100644
index 0000000..2dd026d
--- /dev/null
+++ b/library/topology/order-topology.tex
@@ -0,0 +1,33 @@
+\import{topology/topological-space.tex}
+\import{order/order.tex}
+
+\section{Order Topology}
+
+\begin{abbreviation}\label{open_interval}
+ $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$.
+ %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$.
+\end{abbreviation}
+
+\begin{struct}\label{order_topology}
+ A ordertopology space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $<$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{order_topology_1} $<$ is a strict order on $X$
+ \item \label{order_topology_2}
+ \item \label{order_topology_3}
+ \item \label{order_topology_4}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \end{enumerate}
+\end{struct}
+
+
+
+%\begin{definition}\label{order_topology}
+% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space.
+% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is .
+%\end{definition}