summaryrefslogtreecommitdiff
path: root/library/topology/real-topological-space.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2025-07-02 20:28:22 +0200
committerGitHub <noreply@github.com>2025-07-02 20:28:22 +0200
commit793849dd0b20bc70ea0e0ecfd5008a3806eca0d9 (patch)
tree280949f358a695c5471212cc5b22950399d8cd57 /library/topology/real-topological-space.tex
parent3caadfbe0fdb417b8edebc17002ddafe795a4bcc (diff)
parent8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (diff)
Merge pull request #2 from Simon-Kor/main
Merge (finally)
Diffstat (limited to 'library/topology/real-topological-space.tex')
-rw-r--r--library/topology/real-topological-space.tex786
1 files changed, 786 insertions, 0 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
new file mode 100644
index 0000000..db7ee94
--- /dev/null
+++ b/library/topology/real-topological-space.tex
@@ -0,0 +1,786 @@
+\import{set.tex}
+\import{set/cons.tex}
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{set/product.tex}
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{topology/basis.tex}
+\import{numbers.tex}
+\import{function.tex}
+
+
+\section{Topology Reals}\label{form_sec_toporeals}
+
+\begin{definition}\label{topological_basis_reals_eps_ball}
+ $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
+\end{definition}
+
+\begin{axiom}\label{reals_carrier_reals}
+ $\carrier[\reals] = \reals$.
+\end{axiom}
+
+\begin{lemma}\label{intervals_are_connected_in_reals}
+ Suppose $a,b \in \reals$.
+ Then for all $c \in \reals$ such that $a < c < b$ we have $c \in \intervalopen{a}{b}$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subset_reals_elem}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{intervalopen_iff}
+ Suppose $a,b,c \in \reals$.
+ Suppose $a < b$.
+ $c \in \intervalopen{a}{b}$ iff $a < c < b$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subseteq_reals_set}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} \subseteq \reals$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_subset_reals_set}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} \subset \reals$.
+\end{lemma}
+
+\begin{lemma}\label{reals_order_minus_positiv}
+ Suppose $x,y \in \reals$.
+ Suppose $\zero < y$.
+ $x - y < x$.
+\end{lemma}
+
+\begin{lemma}\label{realsplus_bigger_zero}
+ For all $x \in \realsplus$ we have $\zero < x$.
+\end{lemma}
+
+\begin{lemma}\label{realsplus_in_reals}
+ For all $x \in \realsplus$ we have $x \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_are_inhabited}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon}$ is inhabited.
+\end{lemma}
+\begin{proof}
+ $x < x + \epsilon$ by \cref{reals_order_behavior_with_addition,realsplus,reals_axiom_zero_in_reals,reals_axiom_kommu,reals_axiom_zero}.
+ $x - \epsilon < x$.
+ $x \in \epsBall{x}{\epsilon}$.
+\end{proof}
+
+\begin{lemma}\label{reals_elem_inbetween}
+ For all $a,b \in \reals$ such that $a < b$ we have there exists $c \in \reals$ such that $a < c < b$.
+\end{lemma}
+
+\begin{lemma}\label{epsball_equal_openinterval}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then $\epsBall{x}{\epsilon} = \intervalopen{x - \epsilon}{x + \epsilon}$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior1}
+ For all $x \in \reals$ we have $x - x = \zero$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior2}
+ For all $x \in \reals$ we have $x + \neg{x} = \zero$.
+\end{lemma}
+
+\begin{lemma}\label{minus_behavior3}
+ For all $x \in \reals$ we have $\neg{x} = \zero - x$.
+\end{lemma}
+
+\begin{lemma}\label{reals_order_is_addition_with_positiv_number}
+ For all $x,y \in \reals$ such that $x < y$ we have there exists $z \in \realsplus$ such that $x + z = y$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+
+\begin{lemma}\label{reals_order_plus_minus}
+ Suppose $a,b \in \reals$.
+ Suppose $\zero < b$.
+ Then $(a-b) < (a+b)$.
+\end{lemma}
+\begin{proof}
+ We show that $a < (a+b)$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ We show that $(a-b) < a$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+\end{proof}
+
+\begin{lemma}\label{epsball_are_connected_in_reals}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then for all $c \in \reals$ such that $(x - \epsilon) < c < (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ $x - \epsilon \in \reals$.
+ $x + \epsilon \in \reals$.
+
+
+ It suffices to show that for all $c$ such that $c \in \reals \land (x - \epsilon) \rless c \rless (x + \epsilon)$ we have $c \in \epsBall{x}{\epsilon}$.
+ Fix $c$ such that $(c \in \reals) \land (x - \epsilon) \rless c \rless (x + \epsilon)$.
+ $(x - \epsilon) < c < (x + \epsilon)$.
+\end{proof}
+
+\begin{theorem}\label{topological_basis_reals_is_prebasis}
+ $\topoBasisReals$ is a topological prebasis for $\reals$.
+\end{theorem}
+\begin{proof}
+ We show that $\unions{\topoBasisReals} \subseteq \reals$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$.
+ Fix $x \in \unions{\topoBasisReals}$.
+ \begin{byCase}
+ \caseOf{$x = \emptyset$.}
+ Trivial.
+ \caseOf{$x \neq \emptyset$.}
+ %There exists $U \in \topoBasisReals$ such that $x \in U$.
+ Take $U \in \topoBasisReals$ such that $x \in U$.
+ Follows by \cref{epsball_are_subseteq_reals_set,topological_basis_reals_eps_ball,epsilon_ball,minus,subseteq}.
+ \end{byCase}
+ \end{subproof}
+ We show that $\reals \subseteq \unions{\topoBasisReals}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$.
+ Fix $x \in \reals$.
+ $\epsBall{x}{1} \in \topoBasisReals$.
+ Therefore $x \in \unions{\topoBasisReals}$ by \cref{one_in_reals,reals_one_bigger_zero,unions_intro,realsplus,plus_one_order,reals_order_minus_positiv,epsball_are_connected_in_reals}.
+ \end{subproof}
+\end{proof}
+
+%\begin{lemma}\label{intervl_intersection_is_interval}
+% Suppose $a,b,a',b' \in \reals$.
+% Suppose there exist $x \in \reals$ such that $x \in \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$.
+% Then there exists $q,p \in \reals$ such that $q < p$ and $\intervalopen{q}{p} \subseteq \intervalopen{a}{b} \inter \intervalopen{a'}{b'}$.
+%\end{lemma}
+%
+
+\begin{lemma}\label{reals_order_total}
+ For all $x,y \in \reals$ we have either $x < y$ or $x \geq y$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have for all $y \in \reals$ we have either $x < y$ or $x \geq y$.
+ Fix $x \in \reals$.
+ Fix $y \in \reals$.
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{topo_basis_reals_eps_iff}
+ $X \in \topoBasisReals$ iff there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} = X$.
+\end{lemma}
+
+\begin{lemma}\label{topo_basis_reals_intro}
+For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have $\epsBall{x}{\delta} \in \topoBasisReals$.
+\end{lemma}
+
+\begin{lemma}\label{realsplus_in_reals_plus}
+ For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x + y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{realspuls_in_reals_minus}
+ For all $x,y$ such that $x \in \reals$ and $y \in \realsplus$ we have $x - y \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{eps_ball_implies_open_interval}
+ Suppose $x \in \reals$.
+ Suppose $\epsilon \in \realsplus$.
+ Then there exists $a,b \in \reals$ such that $a < b$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+\end{lemma}
+
+\begin{lemma}\label{one_in_realsplus}
+ $1 \in \realsplus$.
+\end{lemma}
+
+\begin{lemma}\label{reals_existence_addition_reverse}
+ For all $\delta \in \reals$ there exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$.
+\end{lemma}
+\begin{proof}
+ Fix $\delta \in \reals$.
+ Follows by \cref{one_in_realsplus,reals_disstro2,reals_axiom_disstro1,reals_rmul,suc_eq_plus_one,reals_axiom_mul_invers,suc,suc_neq_emptyset,realsplus_in_reals_plus,naturals_addition_axiom_2,naturals_1_kommu,reals_axiom_zero,naturals_inductive_set,one_is_suc_zero,realsplus,reals_one_bigger_zero,one_in_reals,reals_axiom_one,minus_in_reals}.
+\end{proof}
+
+\begin{lemma}\label{reals_addition_minus_behavior1}
+ For all $a,b,c \in \reals$ such that $a = b + c$ we have $b = a - c$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $a \in \reals$ for all $b \in \reals$ for all $c \in \reals$ if $a = b + c$ then $b = a - c$.
+ Fix $a \in \reals$.
+ Fix $b \in \reals$.
+ Fix $c \in \reals$.
+ Suppose $a = b + c$.
+ Then $a + \neg{c} = b + c + \neg{c}$.
+ Therefore $a - c = b + c + \neg{c}$.
+ $a - c = (b + c) - c$.
+ $(b + c) - c = (b + c) + \neg{c}$.
+ $(b + c) + \neg{c} = b + (c + \neg{c})$.
+ $b + (c + \neg{c}) = b + (\zero)$.
+ $a - c = b$.
+\end{proof}
+
+\begin{lemma}\label{reals_addition_minus_behavior2}
+ For all $a,b,c \in \reals$ such that $a = b - c$ we have $b = c + a$.
+\end{lemma}
+
+\begin{lemma}\label{open_interval_eq_eps_ball}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then there exist $x,\epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\delta = (b-a)$.
+ $\delta$ is positiv by \cref{minus_in_reals,minus_behavior3,reals_axiom_zero_in_reals,reals_order_behavior_with_addition,minus_behavior1,minus}.
+ There exists $\epsilon \in \reals$ such that $\epsilon + \epsilon = \delta$.
+ Let $x = a + \epsilon$.
+ $a + \delta = b$.
+ $a + \epsilon + \epsilon = b$.
+ $x + \epsilon = b$.
+ $\epsilon \in \realsplus$ by \cref{reals_order_behavior_with_addition,reals_axiom_kommu,reals_axiom_zero,reals_order_is_transitive,reals_add,minus_behavior1,minus_behavior3,minus,reals_order_total,reals_axiom_zero_in_reals,realsplus}.
+ $a = x - \epsilon$.
+ $b = x + \epsilon$.
+ We show that $\intervalopen{a}{b} \subseteq \epsBall{x}{\epsilon}$.
+ \begin{subproof}
+ It suffices to show that for all $y \in \intervalopen{a}{b}$ we have $y \in \epsBall{x}{\epsilon}$.
+ Fix $y \in \intervalopen{a}{b}$.
+ \end{subproof}
+ We show that $\epsBall{x}{\epsilon} \subseteq \intervalopen{a}{b}$.
+ \begin{subproof}
+ It suffices to show that for all $y \in \epsBall{x}{\epsilon}$ we have $y \in \intervalopen{a}{b}$ by \cref{subseteq}.
+ Fix $y \in \epsBall{x}{\epsilon}$.
+ \end{subproof}
+
+\end{proof}
+
+\begin{lemma}\label{intersection_openinterval_inclusion_of_border}
+ Suppose $a,b,x,y \in \reals$.
+ Suppose $a < b$.
+ Suppose $x < y$.
+ Suppose $a \leq x < y \leq b$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{intersection_openinterval_lower_border_eq}
+ Suppose $a,b,x,y \in \reals$.
+ Suppose $a < b$.
+ Suppose $x < y$.
+ Suppose $a = x$ and $b \leq y$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{a}{b}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{intersection_openinterval_upper_border_eq}
+ Suppose $a,b,x,y \in \reals$.
+ Suppose $a < b$.
+ Suppose $x < y$.
+ Suppose $a \leq x$ and $b = y$.
+ Then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{y}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{intersection_openinterval_none_border_eq}
+ Suppose $a,b,x,y \in \reals$.
+ Suppose $a < b$.
+ Suppose $x < y$.
+ If $a \leq x < b \leq y$ then $\intervalopen{a}{b} \inter \intervalopen{x}{y} = \intervalopen{x}{b}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{reals_order_total2}
+ For all $a,b \in \reals$ we have $a < b \lor a > b \lor a = b$.
+\end{lemma}
+
+
+\begin{theorem}\label{topological_basis_reals_is_basis}
+ $\topoBasisReals$ is a topological basis for $\reals$.
+\end{theorem}
+\begin{proof}
+ $\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}.
+ Let $B = \topoBasisReals$.
+ It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ Fix $U \in B$.
+ Fix $V \in B$.
+ It suffices to show that for all $x \in U \inter V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ Fix $x \in U \inter V$.
+ \begin{byCase}
+ \caseOf{$U \inter V = \emptyset$.}
+ Trivial.
+ \caseOf{$U \inter V \neq \emptyset$.}
+ Then $U \inter V$ is inhabited.
+ $x \in \reals$ by \cref{inter_lower_left,subseteq,topological_prebasis_iff_covering_family,omega_is_an_ordinal,naturals_subseteq_reals,subset_transitive,suc_subseteq_elim,ordinal_suc_subseteq}.
+ There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$.
+ There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$.
+ Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$.
+ Then $ (x_2 - \beta) < x < (x_2 + \beta)$.
+ Let $a = (x_1 - \alpha)$.
+ Let $b = (x_1 + \alpha)$.
+ Let $c = (x_2 - \beta)$.
+ Let $d = (x_2 + \beta)$.
+ We have $a < b$ and $a < x$ and $x < b$.
+ We have $c < d$ and $c < x$ and $x < d$.
+ We have $a \in \reals$.
+ We have $b \in \reals$.
+ We have $c \in \reals$.
+ We have $d \in \reals$.
+ We show that there exist $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$.
+ \begin{subproof}
+ \begin{byCase}
+ \caseOf{$a < c$.}
+ \begin{byCase}
+ \caseOf{$b < d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \caseOf{$b = d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \caseOf{$b > d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \end{byCase}
+ \caseOf{$a = c$.}
+ \begin{byCase}
+ \caseOf{$b < d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \caseOf{$b = d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \caseOf{$b > d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus}.
+ \end{byCase}
+ \caseOf{$a > c$.}
+ \begin{byCase}
+ \caseOf{$b < d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}.
+ \caseOf{$b = d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}.
+ \caseOf{$b > d$.}
+ Follows by \cref{intersection_openinterval_inclusion_of_border,intersection_openinterval_lower_border_eq,intersection_openinterval_none_border_eq,intersection_openinterval_upper_border_eq,reals_order_is_transitive,realsplus_in_reals_plus,realspuls_in_reals_minus,reals_add,minus_in_reals,realsplus,inter_comm,epsilon_ball}.
+ \end{byCase}
+ \end{byCase}
+ \end{subproof}
+
+ Take $a',b'\in \reals$ such that $\intervalopen{a}{b} \inter \intervalopen{c}{d} = \intervalopen{a'}{b'}$.
+ We have $a',b' \in \reals$ by assumption.
+ We have $a' < b'$ by \cref{id_img,epsilon_ball,minus,intervalopen,reals_order_is_transitive}.
+ Then there exist $x',\epsilon'$ such that $x' \in \reals$ and $\epsilon' \in \realsplus$ and $\intervalopen{a'}{b'} = \epsBall{x'}{\epsilon'}$.
+ Then $x \in \epsBall{x'}{\epsilon'}$ by \cref{epsilon_ball}.
+
+ Follows by \cref{inter_lower_left,inter_lower_right,epsilon_ball,topological_basis_reals_eps_ball}.
+ %Then $(x_1 - \alpha) < (x_2 + \beta)$.
+
+ %Therefore $U \inter V = \intervalopen{}{(x_2 + \beta)}$.
+
+ %We show that if there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$ then there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ %\begin{subproof}
+ % Suppose there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$.
+ % $x \in \epsBall{x}{\delta}$.
+ % $\epsBall{x}{\delta} \subseteq U$.
+ % $\epsBall{x}{\delta} \subseteq V$.
+ % $\epsBall{x}{\delta} \in B$.
+ %\end{subproof}
+ %It suffices to show that there exists $\delta \in \realsplus$ such that $\epsBall{x}{\delta} \subseteq U \inter V$.
+
+
+ %It suffices to show that there exists $x_0, \delta$ such that $x_0 \in \reals$ and $\delta \in \realsplus$ and $\epsBall{x_0}{\delta} \subseteq u \inter V$.
+ %There exists $x_1, \alpha$ such that $x_1 \in \reals$ and $\alpha \in \realsplus$ and $\epsBall{x_1}{\alpha} = U$.
+ %There exists $x_2, \beta$ such that $x_2 \in \reals$ and $\beta \in \realsplus$ and $\epsBall{x_2}{\beta} = V$.
+ %Then $ (x_1 - \alpha) < x < (x_1 + \alpha)$.
+ %Then $ (x_2 - \beta) < x < (x_2 + \beta)$.
+ %\begin{byCase}
+ % \caseOf{$x_1 = x_2$.}
+ % Take $\gamma \in \realsplus$ such that either $\gamma = \alpha \land \gamma \leq \beta$ or $\gamma \leq \alpha \land \gamma = \beta$.
+ % \caseOf{$x_1 < x_2$.}
+ % \caseOf{$x_1 > x_2$.}
+ %\end{byCase}
+ %%Take $m$ such that $m \in \min{\{(x_1 + \alpha), (x_2 + \beta)\}}$.
+ %Take $n$ such that $n \in \max{\{(x_1 - \alpha), (x_2 - \beta)\}}$.
+ %Then $m < x < n$.
+ %We show that there exists $x_1 \in \reals$ such that $x_1 \in U \inter V$ and $x_1 < x$.
+ %\begin{subproof}
+ % Suppose not.
+ % Then For all $y \in U \inter V$ we have $x \leq y$.
+ %\end{subproof}
+ %We show that there exists $x_2 \in \reals$ such that $x_2 \in U \inter V$ and $x_2 > x$.
+ %\begin{subproof}
+ % Trivial.
+ %\end{subproof}
+ \end{byCase}
+\end{proof}
+
+\begin{axiom}\label{topological_space_reals}
+ $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
+\end{axiom}
+
+\begin{theorem}\label{reals_is_topological_space}
+ $\reals$ is a topological space.
+\end{theorem}
+\begin{proof}
+ $\topoBasisReals$ is a topological basis for $\reals$.
+ Let $B = \topoBasisReals$.
+ We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$.
+ \begin{subproof}
+ It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$.
+ Fix $A \in \opens[\reals]$.
+ Follows by \cref{powerset_elim,topological_space_reals,genopens}.
+ \end{subproof}
+ We show that $\reals \in\opens[\reals]$.
+ \begin{subproof}
+ $B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{\reals}$.
+ $\reals \subseteq \unions{B}$.
+ \end{subproof}
+ We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$.
+ \begin{subproof}
+ Follows by \cref{topological_space_reals,inters_in_genopens}.
+ \end{subproof}
+ We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$.
+ \begin{subproof}
+ Follows by \cref{topological_space_reals,union_in_genopens}.
+ \end{subproof}
+ $\carrier[\reals] = \reals$.
+ Follows by \cref{topological_space}.
+\end{proof}
+
+\begin{proposition}\label{open_interval_is_open}
+ Suppose $a,b \in \reals$.
+ Then $\intervalopen{a}{b} \in \opens[\reals]$.
+\end{proposition}
+\begin{proof}
+ If $a > b$ then $\intervalopen{a}{b} = \emptyset$.
+ If $a = b$ then $\intervalopen{a}{b} = \emptyset$.
+ It suffices to show that if $a < b$ then $\intervalopen{a}{b} \in \opens[\reals]$.
+ Suppose $a \rless b$.
+ Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+ It suffices to show that $\epsBall{x}{\epsilon} \in \opens[\reals]$.
+ $\topoBasisReals$ is a topological basis for $\reals$.
+ $\epsBall{x}{\epsilon} \in \topoBasisReals$.
+ $\topoBasisReals \subseteq \opens[\reals]$ by \cref{basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis}.
+\end{proof}
+
+\begin{lemma}\label{reals_minus_to_realsplus}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $(b - a) \in \realsplus$.
+\end{lemma}
+
+\begin{lemma}\label{existence_of_epsilon_upper_border}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\epsilon = b - a$.
+ Then $\epsilon \in \realsplus$.
+ It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}.
+ Suppose not.
+ Then $ b \in \epsBall{a}{\epsilon}$.
+ Therefore $ (a - \epsilon) < b < (a + \epsilon)$.
+ $b = (a + \epsilon)$.
+ Contradiction.
+\end{proof}
+
+\begin{lemma}\label{existence_of_epsilon_lower_border}
+ Suppose $a,b \in \reals$.
+ Suppose $a > b$.
+ Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\epsilon = a - b$.
+ Then $\epsilon \in \realsplus$.
+ It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}.
+ Suppose not.
+ Then $ b \in \epsBall{a}{\epsilon}$.
+ Therefore $ (a - \epsilon) < b < (a + \epsilon)$.
+ $b = (a - \epsilon)$.
+ Contradiction.
+\end{proof}
+
+\begin{proposition}\label{openinterval_infinite_left_in_opens}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
+\end{proposition}
+\begin{proof}
+ Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteLeft{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$.
+ We show that for all $x \in \intervalopenInfiniteLeft{a}$ we have there exists $e \in E$ such that $x \in e$.
+ \begin{subproof}
+ Fix $x \in \intervalopenInfiniteLeft{a}$.
+ Then $x < a$.
+ Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$.
+ $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_left}.
+ $a \notin \epsBall{x}{\delta'}$.
+ $\epsBall{x}{\delta'} \in E$.
+ \end{subproof}
+ $E \subseteq \topoBasisReals$.
+ We show that $\unions{E} = \intervalopenInfiniteLeft{a}$.
+ \begin{subproof}
+ We show that $\unions{E} \subseteq \intervalopenInfiniteLeft{a}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteLeft{a}$.
+ Fix $x \in \unions{E}$.
+ Take $e \in E$ such that $x \in e$ by \cref{unions_iff}.
+ $x \in \reals$.
+ Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}.
+ $\epsBall{x'}{\delta'} \in E$.
+ We show that for all $y \in e$ we have $y < a$.
+ \begin{subproof}
+ Fix $y \in e$.
+ Then $y \in \epsBall{x'}{\delta'}$.
+ $e = \epsBall{x'}{\delta'}$.
+ There exists $x'' \in \intervalopenInfiniteLeft{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteLeft{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Suppose not.
+ Take $y' \in e$ such that $y' > a$.
+ $x'' < a$.
+ $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}.
+ $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}.
+ Then $x'' < a < y'$.
+ Therefore $(x'' - \delta'') < a < (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_left,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq}.
+ Then $a \in e$ by \cref{epsball_are_connected_in_reals,intervalopen_infinite_left,neq_witness}.
+ Contradiction.
+ \end{subproof}
+ $x < a$.
+ Then $x \in \intervalopenInfiniteLeft{a}$.
+ \end{subproof}
+ We show that $\intervalopenInfiniteLeft{a} \subseteq \unions{E}$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ \end{subproof}
+ $\unions{E} \in \opens[\reals]$ by \cref{opens_unions,reals_is_topological_space,basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis,subset_transitive}.
+\end{proof}
+
+\begin{lemma}\label{continuous_on_basis_implies_continuous_endo}
+ Suppose $X$ is a topological space.
+ Suppose $B$ is a topological basis for $X$.
+ Suppose $f$ is a function from $X$ to $X$.
+ $f$ is continuous iff for all $b \in B$ we have $\preimg{f}{b} \in \opens[X]$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{openinterval_infinite_right_in_opens}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$.
+\end{proposition}
+\begin{proof}
+ Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteRight{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$.
+ We show that for all $x \in \intervalopenInfiniteRight{a}$ we have there exists $e \in E$ such that $x \in e$.
+ \begin{subproof}
+ Fix $x \in \intervalopenInfiniteRight{a}$.
+ Then $a < x$.
+ Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$.
+ $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_right}.
+ $a \notin \epsBall{x}{\delta'}$.
+ $\epsBall{x}{\delta'} \in E$.
+ \end{subproof}
+ $E \subseteq \topoBasisReals$.
+ We show that $\unions{E} = \intervalopenInfiniteRight{a}$.
+ \begin{subproof}
+ We show that $\unions{E} \subseteq \intervalopenInfiniteRight{a}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteRight{a}$.
+ Fix $x \in \unions{E}$.
+ Take $e \in E$ such that $x \in e$ by \cref{unions_iff}.
+ $x \in \reals$.
+ Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}.
+ $\epsBall{x'}{\delta'} \in E$.
+ We show that for all $y \in e$ we have $y > a$.
+ \begin{subproof}
+ Fix $y \in e$.
+ Then $y \in \epsBall{x'}{\delta'}$.
+ $e = \epsBall{x'}{\delta'}$.
+ There exists $x'' \in \intervalopenInfiniteRight{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteRight{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Suppose not.
+ Take $y' \in e$ such that $y' < a$ by \cref{reals_order_total,intervalopen,eps_ball_implies_open_interval}.
+ $x'' > a$.
+ $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}.
+ $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}.
+ Then $x'' > a > y'$.
+ Therefore $(x'' - \delta'') > a > (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_right,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq,epsball_are_connected_in_reals,subseteq}.
+ Then $a \in e$ by \cref{reals_order_is_transitive,reals_order_total,reals_add,realsplus,epsball_are_connected_in_reals,intervalopen_infinite_right,neq_witness}.
+ Contradiction.
+ \end{subproof}
+ $x > a$.
+ Then $x \in \intervalopenInfiniteRight{a}$.
+ \end{subproof}
+ We show that $\intervalopenInfiniteRight{a} \subseteq \unions{E}$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ \end{subproof}
+ $\unions{E} \in \opens[\reals]$.
+
+ %Let $I = \{\neg{b} \mid b \in \intervalopenInfiniteRight{a} \}$.
+ %Let $f(x) = \neg{x}$ for $x \in \reals$.
+ %$f$ is a function from $\reals$ to $\reals$.
+ %We show that $f$ is continuous.
+ %\begin{subproof}
+ % It suffices to show that for all $b \in \topoBasisReals$ we have $\preimg{f}{b} \in \opens[\reals]$.
+ % Fix $b \in \topoBasisReals$.
+ % Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $b = \epsBall{x}{\epsilon}$.
+ % Let $y = \neg{x}$.
+ % It suffices to show that $\preimg{f}{b} \in \topoBasisReals$ by \cref{topological_space_reals,topological_basis_reals_is_basis,basis_is_in_genopens,cons_remove,cons_subseteq_iff}.
+ % It suffices to show that $\epsBall{y}{\epsilon} = \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % $\preimg{f}{\epsBall{x}{\epsilon}} \subseteq \reals$.
+ % $\epsBall{y}{\epsilon} \subseteq \reals$ by \cref{intervalopen,subseteq,minus,epsilon_ball}.
+ % %It suffices to show that for all $x \in \reals$ we have $x \in \epsBall{y}{\epsilon}$ iff $x \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % %Fix $x \in \reals$.
+ % Let $u = (y - \epsilon)$.
+ % Let $v = (y + \epsilon)$.
+ % $u = \neg{(x - \epsilon)}$.
+ % $v = \neg{(x + \epsilon)}$.
+ % %$v - u = \epsilon + \epsilon$.
+ % We show that for all $z \in \epsBall{y}{\epsilon}$ we have $z \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % \begin{subproof}
+ % Fix $z \in \epsBall{y}{\epsilon}$.
+ % Then $u < z < v$.
+ % Let $z' = z - u$.
+ % Then $z = u + z'$.
+ % Suppose not.
+ % Let $h = \neg{z}$.
+ % $\neg{h} = \neg{\neg{z}}$.
+ % $\neg{h} = z$.
+ % Then $f(h) = \neg{h}$.
+ % $f(h) = z$.
+ % Then $z \in \preimg{f}{\{h\}}$.
+%
+ % \end{subproof}
+ % We show that for all $z \in \preimg{f}{\epsBall{x}{\epsilon}}$ we have $z \in \epsBall{y}{\epsilon}$.
+ % \begin{subproof}
+ % Fix $z \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % Take $h \in \epsBall{x}{\epsilon}$ such that $f(h) = z$.
+ % \end{subproof}
+ % Follows by set extensionality.
+ %\end{subproof}
+ %$\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
+ %We show that $\preimg{f}{\intervalopenInfiniteLeft{a}} = \intervalopenInfiniteRight{a}$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$ by \cref{continuous,preim_eq_img_of_converse,openinterval_infinite_left_in_opens}.
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals1}
+ Suppose $a,b \in \reals$.
+ Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$.
+\end{lemma}
+\begin{proof}
+ We show that for all $x \in \reals$ we have $x \in (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b})$.
+ \begin{subproof}
+ Fix $x \in \reals$.
+ Follows by \cref{union_intro_left,intervalopen_infinite_left,reals_order_total,reals_order_total2,union_iff,intervalopen_infinite_right,union_assoc,union_intro_right,intervalclosed}.
+ \end{subproof}
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals2}
+ Suppose $a \in \reals$.
+ Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalclosedInfiniteRight{a}$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have either $x \in \intervalopenInfiniteLeft{a}$ or $x \in \intervalclosedInfiniteRight{a}$ by \cref{intervalopen_infinite_left,union_intro_left,neq_witness,intervalclosed_infinite_right,union_intro_right,union_iff}.
+ Trivial.
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals3}
+ Suppose $a \in \reals$.
+ Then $\reals = \intervalopenInfiniteRight{a} \union \intervalclosedInfiniteLeft{a}$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have either $x \in \intervalclosedInfiniteLeft{a}$ or $x \in \intervalopenInfiniteRight{a}$.
+ Trivial.
+\end{proof}
+
+\begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_right}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteRight{a} \inter \intervalclosedInfiniteLeft{a} = \emptyset$.
+\end{lemma}
+\begin{proof}
+ Follows by \cref{reals_order_total,inter_lower_left,intervalopen_infinite_right,order_reals_lemma6,inter_lower_right,foundation,subseteq,intervalclosed_infinite_left}.
+\end{proof}
+
+\begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_left}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteLeft{a} \inter \intervalclosedInfiniteRight{a} = \emptyset$.
+\end{lemma}
+
+\begin{proposition}\label{closedinterval_infinite_right_in_closeds}
+ Suppose $a \in \reals$.
+ Then $\intervalclosedInfiniteRight{a} \in \closeds{\reals}$.
+\end{proposition}
+\begin{proof}
+ $\intervalclosedInfiniteRight{a} = \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{intersection_of_open_closed__infinite_intervals_open_left,reals_as_union_of_open_closed_intervals2,setminus_inter,double_relative_complement,subseteq_union_setminus,subseteq_setminus,setminus_union,setminus_disjoint,setminus_partition,setminus_subseteq,setminus_emptyset,setminus_self,setminus_setminus,double_complement_union}.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_infinite_left_in_closeds}
+ Suppose $a \in \reals$.
+ Then $\intervalclosedInfiniteLeft{a} \in \closeds{\reals}$.
+\end{proposition}
+\begin{proof}
+ $\intervalclosedInfiniteLeft{a} = \reals \setminus \intervalopenInfiniteRight{a}$.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_eq_openintervals_setminus_reals}
+ Suppose $a,b \in \reals$.
+ Then $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$.
+\end{proposition}
+\begin{proof}
+ We have $\intervalclosed{a}{b} \subseteq \reals$.
+ We show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ We show that for all $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$ we have $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ Fix $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$.
+ Then $x \in \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{setminus,double_complement_union}.
+ Then $x \in \reals \setminus \intervalopenInfiniteRight{b}$ by \cref{union_upper_left,subseteq,union_comm,subseteq_implies_setminus_supseteq}.
+ Follows by \cref{inter_intro}.
+ \end{subproof}
+ We show that for all $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$ we have $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ Fix $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ Then $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ by \cref{setminus_setminus,setminus}.
+ Then $x \in (\reals \setminus \intervalopenInfiniteRight{b})$ by \cref{inter_lower_right,elem_subseteq,setminus_setminus}.
+ \end{subproof}
+ Follows by \cref{setminus_union}.
+ \end{subproof}
+ We show that $\reals \setminus \intervalopenInfiniteLeft{a} = \intervalclosedInfiniteRight{a}$.
+ \begin{subproof}
+ For all $x \in \intervalclosedInfiniteRight{a}$ we have $x \geq a$.
+ For all $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ we have $x \geq a$.
+ Follows by set extensionality.
+ \end{subproof}
+ $\reals \setminus \intervalopenInfiniteRight{b} = \intervalclosedInfiniteLeft{b}$.
+ It suffices to show that $\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a} = \intervalclosed{a}{b}$.
+ For all $x \in \intervalclosed{a}{b}$ we have $a \leq x \leq b$.
+ For all $x \in (\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a})$ we have $a \leq x \leq b$.
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_is_closed}
+ Suppose $a,b \in \reals$.
+ Then $\intervalclosed{a}{b} \in \closeds{\reals}$.
+\end{proposition}
+\begin{proof}
+ We have $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$.
+ It suffices to show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$ by \cref{closeds,setminus_subseteq,powerset_intro,closed_minus_open_is_closed,opens_type,subseteq_refl,union_open,is_closed_in,reals_carrier_reals,setminus_self,emptyset_open,reals_is_topological_space,openinterval_infinite_left_in_opens,openinterval_infinite_right_in_opens}.
+\end{proof}