summaryrefslogtreecommitdiff
path: root/library/topology/real-topological-space.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-16 19:37:27 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-16 19:37:27 +0200
commitc021e79033abbb3fd4458304e701b3c54a284902 (patch)
tree6bbcb8fce9ac6b1c263749d561d67434d6f60127 /library/topology/real-topological-space.tex
parent13d7b11c23f8862c9f214c46ee05fad314e9e698 (diff)
working commit
Diffstat (limited to 'library/topology/real-topological-space.tex')
-rw-r--r--library/topology/real-topological-space.tex144
1 files changed, 144 insertions, 0 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index 428ee24..b3efa20 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -461,3 +461,147 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Suppose $a,b \in \reals$.
Then $\intervalopen{a}{b} \in \opens[\reals]$.
\end{proposition}
+\begin{proof}
+ If $a > b$ then $\intervalopen{a}{b} = \emptyset$.
+ If $a = b$ then $\intervalopen{a}{b} = \emptyset$.
+ It suffices to show that if $a < b$ then $\intervalopen{a}{b} \in \opens[\reals]$.
+ Suppose $a \rless b$.
+ Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $\intervalopen{a}{b} = \epsBall{x}{\epsilon}$.
+ It suffices to show that $\epsBall{x}{\epsilon} \in \opens[\reals]$.
+ $\topoBasisReals$ is a topological basis for $\reals$.
+ $\epsBall{x}{\epsilon} \in \topoBasisReals$.
+ $\topoBasisReals \subseteq \opens[\reals]$ by \cref{basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis}.
+\end{proof}
+
+\begin{lemma}\label{reals_minus_to_realsplus}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $(b - a) \in \realsplus$.
+\end{lemma}
+
+\begin{lemma}\label{existence_of_epsilon_upper_border}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\epsilon = b - a$.
+ Then $\epsilon \in \realsplus$.
+ It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}.
+ Suppose not.
+ Then $ b \in \epsBall{a}{\epsilon}$.
+ Therefore $ (a - \epsilon) < b < (a + \epsilon)$.
+ $b = (a + \epsilon)$.
+ Contradiction.
+\end{proof}
+
+\begin{lemma}\label{existence_of_epsilon_lower_border}
+ Suppose $a,b \in \reals$.
+ Suppose $a > b$.
+ Then there exists $\epsilon \in \realsplus$ such that $b \notin \epsBall{a}{\epsilon}$.
+\end{lemma}
+\begin{proof}
+ Let $\epsilon = a - b$.
+ Then $\epsilon \in \realsplus$.
+ It suffices to show that $b \notin \epsBall{a}{\epsilon}$ by \cref{epsilon_ball,reals_addition_minus_behavior2,realsplus,minus,intervalopen,order_reals_lemma0}.
+ Suppose not.
+ Then $ b \in \epsBall{a}{\epsilon}$.
+ Therefore $ (a - \epsilon) < b < (a + \epsilon)$.
+ $b = (a - \epsilon)$.
+ Contradiction.
+\end{proof}
+
+\begin{proposition}\label{openinterval_infinite_left_in_opens}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
+\end{proposition}
+\begin{proof}
+ Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteLeft{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$.
+ We show that for all $x \in \intervalopenInfiniteLeft{a}$ we have there exists $e \in E$ such that $x \in e$.
+ \begin{subproof}
+ Fix $x \in \intervalopenInfiniteLeft{a}$.
+ Then $x < a$.
+ Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$.
+ $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_left}.
+ $a \notin \epsBall{x}{\delta'}$.
+ $\epsBall{x}{\delta'} \in E$.
+ \end{subproof}
+ $E \subseteq \topoBasisReals$.
+ We show that $\unions{E} = \intervalopenInfiniteLeft{a}$.
+ \begin{subproof}
+ We show that $\unions{E} \subseteq \intervalopenInfiniteLeft{a}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteLeft{a}$.
+ Fix $x \in \unions{E}$.
+ Take $e \in E$ such that $x \in e$.
+ $x \in \reals$.
+ Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}.
+ $\epsBall{x'}{\delta'} \in E$.
+ We show that for all $y \in e$ we have $y < a$.
+ \begin{subproof}
+ Fix $y \in e$.
+ Then $y \in \epsBall{x'}{\delta'}$.
+ $e = \epsBall{x'}{\delta'}$.
+ There exists $x'' \in \intervalopenInfiniteLeft{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteLeft{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Suppose not.
+ Take $y' \in e$ such that $y' > a$.
+ $x'' < a$.
+ $(x'' - \delta'') < y' < (x'' + \delta'')$.
+ $(x'' - \delta'') < x'' < (x'' + \delta'')$.
+ Then $x'' < a < y'$.
+ Therefore $(x'' - \delta'') < a < (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_left,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq}.
+ Then $a \in e$ by \cref{epsball_are_connected_in_reals,intervalopen_infinite_left,neq_witness}.
+ Contradiction.
+ \end{subproof}
+ $x < a$.
+ Then $x \in \intervalopenInfiniteLeft{a}$.
+ \end{subproof}
+ We show that $\intervalopenInfiniteLeft{a} \subseteq \unions{E}$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ \end{subproof}
+ $\unions{E} \in \opens[\reals]$.
+\end{proof}
+
+\begin{lemma}\label{continuous_on_basis_implies_continuous_endo}
+ Suppose $X$ is a topological space.
+ Suppose $B$ is a topological basis for $X$.
+ Suppose $f$ is a function from $X$ to $X$.
+ $f$ is continuous iff for all $b \in B$ we have $\preimg{f}{b} \in \opens[X]$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{openinterval_infinite_right_in_opens}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$.
+\end{proposition}
+\begin{proof}
+ Let $I = \{\neg{b} \mid b \in \intervalopenInfiniteRight{a} \}$.
+ Let $f(x) = \neg{x}$ for $x \in \reals$.
+ $f$ is a function from $\reals$ to $\reals$.
+ We show that $f$ is continuous.
+ \begin{subproof}
+ It suffices to show that for all $b \in \topoBasisReals$ we have $\preimg{f}{b} \in \opens[\reals]$.
+ Fix $b \in \topoBasisReals$.
+ Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $b = \epsBall{x}{\epsilon}$.
+ Let $y = \neg{x}$.
+ It suffices to show that $\preimg{f}{b} \in \topoBasisReals$ by \cref{topological_space_reals,topological_basis_reals_is_basis,basis_is_in_genopens,cons_remove,cons_subseteq_iff}.
+ It suffices to show that $\epsBall{y}{\epsilon} = \preimg{f}{\epsBall{x}{\epsilon}}$.
+ Follows by set extensionality.
+ \end{subproof}
+ $\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
+ We show that $\preimg{f}{\intervalopenInfiniteLeft{a}} = \intervalopenInfiniteRight{a}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$ by \cref{continuous,preim_eq_img_of_converse,openinterval_infinite_left_in_opens}.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_is_closed}
+ Suppose $a,b \in \reals$.
+ Then $\intervalclosed{a}{b} \in \closeds{\reals}$.
+\end{proposition}