summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-23 03:05:41 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-23 03:05:41 +0200
commitf6b22fd533bd61e9dbcb6374295df321de99b1f2 (patch)
tree9848da3e57979a5a7e14ec99ee103cfa079e6fcb /library/topology/urysohn.tex
parent29f32e2031eafa087323d79d812a1b38ac78f977 (diff)
Abgabe
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index ae03273..cd85fbc 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -13,7 +13,7 @@
\import{set/fixpoint.tex}
\import{set/product.tex}
-\section{Urysohns Lemma}
+\section{Urysohns Lemma Part 1 with struct}\label{form_sec_urysohn1}
% In this section we want to proof Urysohns lemma.
% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
% The Idea is to construct staircase functions as a chain.
@@ -22,7 +22,7 @@
%Chains of sets.
-The first tept will be a formalisation of chain constructions.
+This is the first attempt to prove Urysohns Lemma with the usage of struct.
\subsection{Chains of sets}
% Assume $A,B$ are subsets of a topological space $X$.