summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-15 15:07:36 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-15 15:07:36 +0200
commitb298295ac002785672a8b16dd09f9692d73f7a80 (patch)
tree9c03dde2cec2bca83927175819534cf53a7bd7c8 /library/topology/urysohn2.tex
parent12f360a500d5edddf83afa121a5a08b6a6408815 (diff)
Issue at Fixing.
In Line 49 in real-topological-space.tex the Fix can't be processed.
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex73
1 files changed, 61 insertions, 12 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 396255e..838b121 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -152,16 +152,23 @@
\begin{proposition}\label{no_natural_between_n_and_suc_n}
For all $n,m \in \naturals$ we have not $n < m < \suc{n}$.
\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{naturals_is_zero_one_or_greater}
+ $\naturals = \{n \in \naturals \mid n > 1 \lor n = 1 \lor n = \zero\}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{proposition}\label{naturals_rless_existence_of_lesser_natural}
For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$.
\end{proposition}
\begin{proof}[Proof by \in-induction on $n$]
Assume $n \in \naturals$.
- We show that $\naturals = (\{\zero, 1\} \union \{n \in \naturals \mid n > 1\})$.
- \begin{subproof}
- Trivial.
- \end{subproof}
+
\begin{byCase}
\caseOf{$n = \zero$.}
@@ -196,9 +203,17 @@
We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$.
\begin{subproof}[Proof by \in-induction on $m$]
Assume $m \in \naturals$.
- %\begin{byCase}
- %
- %\end{byCase}
+ \begin{byCase}
+ \caseOf{$\suc{m}=n$.}
+ \caseOf{$\suc{m}\neq n$.}
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ \caseOf{$n \neq \zero$.}
+ Take $l \in \naturals$ such that $\suc{l} = n$.
+ Omitted.
+
+ \end{byCase}
+ \end{byCase}
\end{subproof}
\end{subproof}
@@ -323,17 +338,51 @@
For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
\end{proposition}
+\begin{proposition}\label{bijection_naturals_order}
+ For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
\begin{proposition}\label{existence_normal_ordered_urysohn}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain of $X$.
Suppose $\dom{U}$ is finite.
- Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $X$ to $Y$ and $V$ is normal ordered.
+ Suppose $U$ is inhabited.
+ Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $U$ to $V$ and $V$ is normal ordered.
\end{proposition}
\begin{proof}
- Take $k$ such that $\dom{U}$ has cardinality $k$ by \cref{ran_converse,cardinality,finite}.
- There exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$.
-
-
+ Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}.
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ Omitted.
+ \caseOf{$n \neq \zero$.}
+ Take $k$ such that $k \in \naturals$ and $\suc{k}=n$.
+ We have $\dom{U} \subseteq \naturals$.
+ $\dom{U}$ is inhabited.
+ We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ Let $N = \seq{\zero}{k}$.
+ Let $M = \pow{X}$.
+ Define $V : N \to M$ such that $V(n)=$
+ \begin{cases}
+ &\at{U}{F(n)} & \text{if} n \in N
+ \end{cases}
+ $\dom{V} = \seq{\zero}{k}$.
+ We show that $V$ is a urysohnchain of $X$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ We show that $F$ is consistent on $U$ to $V$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ $V$ is normal ordered.
+ \end{byCase}
+
\end{proof}