diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-17 03:39:23 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-09-17 03:39:23 +0200 |
| commit | a9785eb4cac6b8c237173f7e14367babd79e92e1 (patch) | |
| tree | dd111e053dee5d692c4f5e2d104d890f32674a17 /library/topology | |
| parent | 5362771c14eccd80fd1a3ab6521c3a6ad9bb7838 (diff) | |
working commit
Diffstat (limited to 'library/topology')
| -rw-r--r-- | library/topology/real-topological-space.tex | 36 | ||||
| -rw-r--r-- | library/topology/urysohn2.tex | 72 |
2 files changed, 86 insertions, 22 deletions
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex index d9790aa..b2e5ea9 100644 --- a/library/topology/real-topological-space.tex +++ b/library/topology/real-topological-space.tex @@ -382,7 +382,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have We have $a',b' \in \reals$ by assumption. We have $a' < b'$ by \cref{id_img,epsilon_ball,minus,intervalopen,reals_order_is_transitive}. Then there exist $x',\epsilon'$ such that $x' \in \reals$ and $\epsilon' \in \realsplus$ and $\intervalopen{a'}{b'} = \epsBall{x'}{\epsilon'}$. - Then $x \in \epsBall{x'}{\epsilon'}$. + Then $x \in \epsBall{x'}{\epsilon'}$ by \cref{epsilon_ball}. Follows by \cref{inter_lower_left,inter_lower_right,epsilon_ball,topological_basis_reals_eps_ball}. %Then $(x_1 - \alpha) < (x_2 + \beta)$. @@ -536,7 +536,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have \begin{subproof} It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteLeft{a}$. Fix $x \in \unions{E}$. - Take $e \in E$ such that $x \in e$. + Take $e \in E$ such that $x \in e$ by \cref{unions_iff}. $x \in \reals$. Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}. $\epsBall{x'}{\delta'} \in E$. @@ -550,8 +550,8 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Suppose not. Take $y' \in e$ such that $y' > a$. $x'' < a$. - $(x'' - \delta'') < y' < (x'' + \delta'')$. - $(x'' - \delta'') < x'' < (x'' + \delta'')$. + $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. + $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. Then $x'' < a < y'$. Therefore $(x'' - \delta'') < a < (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_left,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq}. Then $a \in e$ by \cref{epsball_are_connected_in_reals,intervalopen_infinite_left,neq_witness}. @@ -565,7 +565,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Trivial. \end{subproof} \end{subproof} - $\unions{E} \in \opens[\reals]$. + $\unions{E} \in \opens[\reals]$ by \cref{opens_unions,reals_is_topological_space,basis_is_in_genopens,topological_space_reals,topological_basis_reals_is_basis,subset_transitive}. \end{proof} \begin{lemma}\label{continuous_on_basis_implies_continuous_endo} @@ -600,7 +600,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have \begin{subproof} It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteRight{a}$. Fix $x \in \unions{E}$. - Take $e \in E$ such that $x \in e$. + Take $e \in E$ such that $x \in e$ by \cref{unions_iff}. $x \in \reals$. Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}. $\epsBall{x'}{\delta'} \in E$. @@ -612,10 +612,10 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have There exists $x'' \in \intervalopenInfiniteRight{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteRight{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$. Suppose not. - Take $y' \in e$ such that $y' < a$. + Take $y' \in e$ such that $y' < a$ by \cref{reals_order_total,intervalopen,eps_ball_implies_open_interval}. $x'' > a$. - $(x'' - \delta'') < y' < (x'' + \delta'')$. - $(x'' - \delta'') < x'' < (x'' + \delta'')$. + $(x'' - \delta'') < y' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. + $(x'' - \delta'') < x'' < (x'' + \delta'')$ by \cref{minus,intervalopen,intervalclosed,epsilon_ball,realsplus,reals_add,reals_addition_minus_behavior1,reals_order_minus_positiv}. Then $x'' > a > y'$. Therefore $(x'' - \delta'') > a > (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_right,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq,epsball_are_connected_in_reals,subseteq}. Then $a \in e$ by \cref{reals_order_is_transitive,reals_order_total,reals_add,realsplus,epsball_are_connected_in_reals,intervalopen_infinite_right,neq_witness}. @@ -689,6 +689,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have We show that for all $x \in \reals$ we have $x \in (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b})$. \begin{subproof} Fix $x \in \reals$. + Follows by \cref{union_intro_left,intervalopen_infinite_left,reals_order_total,reals_order_total2,union_iff,intervalopen_infinite_right,union_assoc,union_intro_right,intervalclosed}. \end{subproof} \end{proof} @@ -697,7 +698,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalclosedInfiniteRight{a}$. \end{lemma} \begin{proof} - It suffices to show that for all $x \in \reals$ we have either $x \in \intervalopenInfiniteLeft{a}$ or $x \in \intervalclosedInfiniteRight{a}$. + It suffices to show that for all $x \in \reals$ we have either $x \in \intervalopenInfiniteLeft{a}$ or $x \in \intervalclosedInfiniteRight{a}$ by \cref{intervalopen_infinite_left,union_intro_left,neq_witness,intervalclosed_infinite_right,union_intro_right,union_iff}. Trivial. \end{proof} @@ -714,6 +715,9 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Suppose $a \in \reals$. Then $\intervalopenInfiniteRight{a} \inter \intervalclosedInfiniteLeft{a} = \emptyset$. \end{lemma} +\begin{proof} + Follows by \cref{reals_order_total,inter_lower_left,intervalopen_infinite_right,order_reals_lemma6,inter_lower_right,foundation,subseteq,intervalclosed_infinite_left}. +\end{proof} \begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_left} Suppose $a \in \reals$. @@ -725,7 +729,7 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have Then $\intervalclosedInfiniteRight{a} \in \closeds{\reals}$. \end{proposition} \begin{proof} - $\intervalclosedInfiniteRight{a} = \reals \setminus \intervalopenInfiniteLeft{a}$. + $\intervalclosedInfiniteRight{a} = \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{intersection_of_open_closed__infinite_intervals_open_left,reals_as_union_of_open_closed_intervals2,setminus_inter,double_relative_complement,subseteq_union_setminus,subseteq_setminus,setminus_union,setminus_disjoint,setminus_partition,setminus_subseteq,setminus_emptyset,setminus_self,setminus_setminus,double_complement_union}. \end{proof} \begin{proposition}\label{closedinterval_infinite_left_in_closeds} @@ -747,15 +751,17 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have We show that for all $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$ we have $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$. \begin{subproof} Fix $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$. - Then $x \in \reals \setminus \intervalopenInfiniteLeft{a}$. - Then $x \in \reals \setminus \intervalopenInfiniteRight{b}$. + Then $x \in \reals \setminus \intervalopenInfiniteLeft{a}$ by \cref{setminus,double_complement_union}. + Then $x \in \reals \setminus \intervalopenInfiniteRight{b}$ by \cref{union_upper_left,subseteq,union_comm,subseteq_implies_setminus_supseteq}. + Follows by \cref{inter_intro}. \end{subproof} We show that for all $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$ we have $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$. \begin{subproof} Fix $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$. - Then $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$. - Then $x \in (\reals \setminus \intervalopenInfiniteRight{b})$. + Then $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ by \cref{setminus_setminus,setminus}. + Then $x \in (\reals \setminus \intervalopenInfiniteRight{b})$ by \cref{inter_lower_right,elem_subseteq,setminus_setminus}. \end{subproof} + Follows by \cref{setminus_union}. \end{subproof} We show that $\reals \setminus \intervalopenInfiniteLeft{a} = \intervalclosedInfiniteRight{a}$. \begin{subproof} diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index 83e3aa4..9990199 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -94,6 +94,9 @@ \begin{proposition}\label{naturals_in_transitive} $\naturals$ is a \in-transitive set. \end{proposition} +\begin{proof} + Follows by \cref{nat_is_transitiveset}. +\end{proof} \begin{proposition}\label{naturals_elem_in_transitive} If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive. @@ -119,6 +122,9 @@ \begin{proposition}\label{zero_is_empty} There exists no $x$ such that $x \in \zero$. \end{proposition} +\begin{proof} + Follows by \cref{notin_emptyset}. +\end{proof} \begin{proposition}\label{one_is_positiv} $1$ is positiv. @@ -163,6 +169,13 @@ Omitted. \end{proof} +\begin{proposition}\label{naturals_one_zero_or_greater} + For all $l \in \naturals$ we have if $l < 1$ then $l = \zero$. +\end{proposition} +\begin{proof} + Follows by \cref{reals_order,naturals_subseteq_reals,subseteq,one_in_reals,naturals_is_zero_one_or_greater}. +\end{proof} + \begin{proposition}\label{naturals_rless_existence_of_lesser_natural} For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$. \end{proposition} @@ -184,7 +197,7 @@ \end{subproof} \caseOf{$n = 1$.} Fix $m$. - For all $l \in \naturals$ we have If $l < 1$ then $l = \zero$. + For all $l \in \naturals$ we have if $l < 1$ then $l = \zero$. Then $\zero + 1 = 1$. \caseOf{$n > 1$.} Take $l \in \naturals$ such that $\suc{l} = n$. @@ -350,7 +363,7 @@ Suppose $U$ is a urysohnchain of $X$. Suppose $\dom{U}$ is finite. Suppose $U$ is inhabited. - Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $U$ to $V$ and $V$ is normal ordered. + Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $V$ to $U$ and $V$ is normal ordered. \end{proposition} \begin{proof} Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}. @@ -360,11 +373,36 @@ \caseOf{$n \neq \zero$.} Take $k$ such that $k \in \naturals$ and $\suc{k}=n$. We have $\dom{U} \subseteq \naturals$. - $\dom{U}$ is inhabited. + $\dom{U}$ is inhabited by \cref{downward_closure,downward_closure_iff,rightunique,function_member_elim,inhabited,chain_of_subsets,urysohnchain,sequence}. + $\dom{U}$ has cardinality $\suc{k}$. We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$. \begin{subproof} - Omitted. + For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$. + We have $\dom{U} \subseteq \naturals$. + $\dom{U}$ is inhabited. + Therefore there exist $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$. + Take $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$. + Take $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$. + $\seq{\zero}{k'}$ has cardinality $\suc{k}$ by \cref{omega_is_an_ordinal,suc,ordinal_transitivity,bijection_converse_is_bijection,seq_zero_to_n_eq_to_suc_n,cardinality,bijections_dom,bijection_circ}. + We show that $\seq{\zero}{k'} = \seq{\zero}{k}$. + \begin{subproof} + We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$. + \begin{subproof} + It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$. + Fix $y \in \seq{\emptyset}{k'}$. + Then $y \leq k'$. + Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}. + %Then $\seq{\emptyset}{k'} \in \suc{k}$. + Therefore $y \in \suc{k}$. + Therefore $y \in \seq{\emptyset}{k}$. + \end{subproof} + We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$. + \begin{subproof} + Fix $y \in \seq{\emptyset}{k}$. + \end{subproof} + \end{subproof} \end{subproof} + Take $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$. Let $N = \seq{\zero}{k}$. Let $M = \pow{X}$. Define $V : N \to M$ such that $V(n)= @@ -374,11 +412,31 @@ $\dom{V} = \seq{\zero}{k}$. We show that $V$ is a urysohnchain of $X$. \begin{subproof} - Trivial. + It suffices to show that $V$ is a chain of subsets in $X$ and for all $n,m \in \dom{V}$ such that $n < m$ we have $\closure{\at{V}{n}}{X} \subseteq \interior{\at{V}{m}}{X}$. + We show that $V$ is a chain of subsets in $X$. + \begin{subproof} + It suffices to show that $V$ is a sequence and for all $n \in \dom{V}$ we have $\at{V}{n} \subseteq \carrier[X]$ and for all $m \in \dom{V}$ such that $m > n$ we have $\at{V}{n} \subseteq \at{V}{m}$. + $V$ is a sequence by \cref{m_to_n_set,sequence,subseteq}. + It suffices to show that for all $n \in \dom{V}$ we have $\at{V}{n} \subseteq \carrier[X]$ and for all $m \in \dom{V}$ such that $m > n$ we have $\at{V}{n} \subseteq \at{V}{m}$. + Fix $n \in \dom{V}$. + Then $\at{V}{n} \subseteq \carrier[X]$ by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}. + It suffices to show that for all $m$ such that $m \in \dom{V}$ and $n \rless m$ we have $\at{V}{n} \subseteq \at{V}{m}$. + Fix $m$ such that $m \in \dom{V}$ and $n \rless m$. + Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}. + \end{subproof} + It suffices to show that for all $n \in \dom{V}$ we have for all $m$ such that $m \in \dom{V} \land n \rless m$ we have $\closure{\at{V}{n}}{X} \subseteq \interior{\at{V}{m}}{X}$. + Fix $n \in \dom{V}$. + Fix $m$ such that $m \in \dom{V} \land n \rless m$. + Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}. \end{subproof} - We show that $F$ is consistent on $U$ to $V$. + We show that $F$ is consistent on $V$ to $U$. \begin{subproof} - Trivial. + It suffices to show that $F$ is a bijection from $\dom{V}$ to $\dom{U}$ and for all $n,m \in \dom{V}$ such that $n < m$ we have $F(n) < F(m)$ by \cref{bijection_of_urysohnchains}. + $F$ is a bijection from $\dom{V}$ to $\dom{U}$. + It suffices to show that for all $n \in \dom{V}$ we have for all $m$ such that $m \in \dom{V}$ and $n \rless m$ we have $f(n) < f(m)$. + Fix $n \in \dom{V}$. + Fix $m$ such that $m \in \dom{V}$ and $n \rless m$. + Follows by \cref{ran_converse,seq_zero_to_n_eq_to_suc_n,in_irrefl}. \end{subproof} $V$ is normal ordered. \end{byCase} |
