summaryrefslogtreecommitdiff
path: root/library/wunschzettel.tex
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2025-07-02 20:28:22 +0200
committerGitHub <noreply@github.com>2025-07-02 20:28:22 +0200
commit793849dd0b20bc70ea0e0ecfd5008a3806eca0d9 (patch)
tree280949f358a695c5471212cc5b22950399d8cd57 /library/wunschzettel.tex
parent3caadfbe0fdb417b8edebc17002ddafe795a4bcc (diff)
parent8fd49ae84e8cc4524c19b20fa0aabb4e77a46cd5 (diff)
Merge pull request #2 from Simon-Kor/main
Merge (finally)
Diffstat (limited to 'library/wunschzettel.tex')
-rw-r--r--library/wunschzettel.tex108
1 files changed, 108 insertions, 0 deletions
diff --git a/library/wunschzettel.tex b/library/wunschzettel.tex
new file mode 100644
index 0000000..74ea899
--- /dev/null
+++ b/library/wunschzettel.tex
@@ -0,0 +1,108 @@
+%This is just a .tex file with a wishlist of functionalitys
+
+
+Tupel struct
+
+\newtheorem{struct2}[theoremcount]{Struct2}
+
+\begin{theorem}
+ %Some Theorem.
+\end{theorem}
+\begin{proof}
+ %Wish for nice Function definition. ---------------------
+
+ %Some Proof where we need a Function.
+ %Privisuly defined.
+ $n \in \naturals$.
+ There is a Set $A = \{A_{0}, ..., A_{n}\}$.
+ For all $i$ we have $A_{i} \subseteq X$.
+
+ Define function $f: X \to Y$,
+ \begin{align}
+ &x \mapsto \rfrac{y}{n} &; if \exists k \in \{1, ... n\}. x \in A_{k} \\
+ &x \mapsto 0 &; if x \phi(x) \\
+ %phi is some fol formula
+
+ &x \mapsto \eta &; for \phi(x) and \psi(\eta)
+
+ &x \mapsto \some_term(x)(u)(v)(w) &; \exist.u,v,w \psi(x)(u)(v)(w) \\
+ % here i see the real need of varibles that can be useds in the define term
+
+ &x \mapsto \some_else_term(x) &; else
+ % the else term would be great
+
+ % the following axioms should be automaticly added.
+ % \dom{f} = X
+ % \ran{f} \subseteq Y
+ % f is function
+
+ % therefor we should add the prompt for a proof that f is well defined
+ \end{align}
+ \begin{proof_well_defined}
+ % we need to proof that f allways maps X to Y
+ \end{proof_well_defined}
+
+ % more proof but now i can use the function f
+
+ % --------------------------------------------------------
+ \begin{equation}
+ X=
+ \begin{cases}
+ 0, & \text{if}\ a=1 \\
+ 1, & \text{otherwise}
+ \end{cases}
+ \end{equation}
+
+
+
+
+\end{proof}
+
+
+%------------------------------------------
+% My wish for a new struct
+% I think this could be just get implemented along with the old struct
+
+
+% If take we only take tupels,
+% then just a list of defining fol formulas should be enougth.
+\begin{struct2}
+ We say $(X,O)$ is a topological space if
+ \begin{enumerate}
+ \item $X$ is a set. % or X = \{...\mid .. \} or X = \naturals ... or ...
+ \item $O \subseteq \pow X$.
+ \item $\forall x,y \in O. x \union y \in O$
+ \item %another formula
+ \item %....
+ \end{enumerate}
+\end{struct2}
+
+
+% Then the proof of some thing is a structure is more easy.
+% Since if we have just a tupel and some formulas which has to be fufilled,
+% then we can make a proof as follows.
+
+\begin{struct2}
+ We say $(A,i,N)$ is a indexed set if
+ \begin{enumerate}
+ \item $f$ is a bijection from $N$ to $A$
+ \item $N \subseteq \naturals$
+ \end{enumerate}
+\end{struct2}
+
+
+\begin{theorem}
+ Let $A = \{ \{n\} \mid n \in \naturals \}$.
+ Let function $f: \naturals \to \pow{\naturals}$ such that,
+ \begin{algin}
+ \item x \mapsto \{x\} ; x \in \naturals
+ \end{algin}
+ Then $(A, f, \naturals)$ is a indexed set.
+\end{theorem}
+\begin{proof}
+ % Then we only need to proof that:
+ % \ran{f} = A
+ % \dom{f} = \naturals
+ % f is a bijection between $\naturals$ to $A$.
+\end{proof}
+