diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-20 12:59:41 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-06-20 12:59:41 +0200 |
| commit | 6839f79e775d8ffa36d421f4e3c08528323eaf17 (patch) | |
| tree | 89e052513a97d4e648d79de03901ef628e8954c6 /library | |
| parent | e90ffa98ad4fe2f12cff83656de84827e16e3ac4 (diff) | |
[Report] Task failed and was proven in the same time.
The Line 182 has the goal to apply regular in a topological space. But if i try to prove it with Naproche ZF, then the task will be proven and the task fails in the same time. Console Output is the following:
time stack exec zf -- --log library/topology/separation.tex -t 30 --dump ./dump
[Info] 00:00.11 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,elem(fx,fB)&subseteq(fB,setminus(s__carrier(fX),fA))&subseteq(setminus(s__carrier(fX),fA),fU)).
[Info] 00:00.11 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,setminus(s__carrier(fX),setminus(s__carrier(fX),fU))=fU).
[Info] 00:00.11 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,?[XN]:(elem(XN,neighbourhoods(fx,fX))&subseteq(XN,fU)&is_closed_in(XN,fX))).
[Info] 00:00.21 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,(is_regular(fX)&is_kolmogorov(fX))<=>![XU]:(elem(XU,s__opens(fX))=>![Xx]:(elem(Xx,XU)=>?[XN]:(elem(XN,neighbourhoods(Xx,fX))&subseteq(XN,XU)&is_closed_in(XN,fX))))).
[Info] 00:02.34 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,?[XB,XA]:(elem(fx,XB)&subseteq(fC,XA)&inter(XA,XB)=emptyset&elem(XA,s__opens(fX))&elem(XB,s__opens(fX)))).
[Info] 00:02.55 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,subseteq(fB,setminus(s__carrier(fX),fA))).
[Info] 00:08.11 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,elem(fN,closeds(fX))&elem(fx,fN)&subseteq(fN,fU)).
[Info] 00:10.70 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,subseteq(setminus(s__carrier(fX),fA),setminus(s__carrier(fX),setminus(s__carrier(fX),fU)))).
[Info] 00:10.98 fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,elem(fN,neighbourhoods(fx,fX))).
Verification failed: prover found countermodel
fof(eqvilance_teethree_closed_neighbourhood_in_open,conjecture,?[XB,XA]:(elem(fx,XB)&subseteq(fC,XA)&inter(XA,XB)=emptyset&elem(XA,s__opens(fX))&elem(XB,s__opens(fX)))).fof(is_regular,axiom,![XX]:(is_regular(XX)<=>![XV]:![Xp,XC]:((elem(Xp,s__carrier(XX))&~elem(Xp,XC)&elem(XC,closeds(XX)))=>?[XU,XC]:(elem(XU,s__opens(XX))&elem(XC,s__opens(XX))&elem(Xp,XU)&subseteq(XC,XV)&inter(XU,XV)=emptyset)))).
fof(eqvilance_teethree_closed_neighbourhood_in_open1,axiom,elem(fx,s__carrier(fX))).
fof(eqvilance_teethree_closed_neighbourhood_in_open2,axiom,~elem(fx,fC)).
fof(eqvilance_teethree_closed_neighbourhood_in_open3,axiom,elem(fC,closeds(fX))).
fof(eqvilance_teethree_closed_neighbourhood_in_open4,axiom,fC=setminus(s__carrier(fX),fU)).
fof(eqvilance_teethree_closed_neighbourhood_in_open5,axiom,elem(fx,fU)).
fof(eqvilance_teethree_closed_neighbourhood_in_open6,axiom,elem(fU,s__opens(fX))).
fof(eqvilance_teethree_closed_neighbourhood_in_open7,axiom,is_regular(fX)&is_kolmogorov(fX)).
fof(eqvilance_teethree_closed_neighbourhood_in_open8,axiom,inhabited(fX)).
fof(eqvilance_teethree_closed_neighbourhood_in_open9,axiom,topological_space(fX)).
real 0m14.914s
user 0m37.867s
sys 0m1.956s
Diffstat (limited to 'library')
| -rw-r--r-- | library/topology/separation.tex | 101 |
1 files changed, 85 insertions, 16 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex index 3268bb9..c53b6a8 100644 --- a/library/topology/separation.tex +++ b/library/topology/separation.tex @@ -1,5 +1,5 @@ \import{topology/topological-space.tex} - +\import{set.tex} % T0 separation \begin{definition}\label{is_kolmogorov} @@ -146,28 +146,65 @@ \end{subproof} \end{proof} -\begin{definition}\label{regular} +\begin{definition}\label{is_regular} $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$. \end{definition} -\begin{definition}\label{regular_space} +\begin{abbreviation}\label{regular_space} $X$ is a regular space iff $X$ is a topological space and $X$ is regular. -\end{definition} +\end{abbreviation} -\begin{definition}\label{teethree} +\begin{abbreviation}\label{teethree} $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ . -\end{definition} +\end{abbreviation} -\begin{definition}\label{teethree_space} +\begin{abbreviation}\label{teethree_space} $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ . -\end{definition} +\end{abbreviation} + +\begin{proposition}\label{eqvilance_teethree_closed_neighbourhood_in_open} + Let $X$ be a topological space. + Suppose $X$ is inhabited. + $X$ is \teethree\ iff for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. +\end{proposition} +\begin{proof} + + We show that if $X$ is \teethree\ then for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$. + \begin{subproof} + Suppose $X$ is regular and kolmogorov. + Fix $U \in \opens[X]$. + Fix $x \in U$. + Let $C = \carrier[X] \setminus U$. + Then $C \in \closeds{X}$. + $x \notin C$. + $x \in \carrier[X]$. + There exists $A,B \in \opens[X]$ such that $x \in B$ and $C \subseteq A$ and $A \inter B = \emptyset$ by \cref{is_regular}. + $B \subseteq (\carrier[X] \setminus A)$. + $(\carrier[X] \setminus A) \subseteq (\carrier[X] \setminus (\carrier[X] \setminus U))$. + $(\carrier[X] \setminus (\carrier[X] \setminus U)) = U$. + $x \in B \subseteq (\carrier[X] \setminus A) \subseteq U$. + Let $N = (\carrier[X] \setminus A)$. + Then $N \in \closeds{X}$ and $x \in N$ and $N \subseteq U$. + Particularly, $N \in \neighbourhoods{x}{X}$. + \end{subproof} + We show that if for all $U \in \opens[X]$ we have for all $x \in U$ we have there exist $N \in \neighbourhoods{x}{X}$ such that $N \subseteq U$ and $N$ is closed in $X$ then $X$ is \teethree\ . + \begin{subproof} + Omitted. + \end{subproof} +\end{proof} + + + \begin{proposition}\label{teethree_space_is_teetwo_space} Let $X$ be a \teethree-space. + Suppose $X$ is inhabited. Then $X$ is a \teetwo-space. \end{proposition} \begin{proof} + Omitted. +\end{proof} For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$. It suffices to show that $X$ is hausdorff. It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. @@ -175,16 +212,48 @@ It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$. Fix $y \in \carrier[X]$. - %There exist $U' \in \opens[X]$ such that $x\in U'\not\ni y$ or $x\notin U'\ni y$ by \cref{}. - %There exist $C \in \closeds{X}$ such that $y \in C \not\ni X$. + We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$. \begin{subproof} - Omitted. + There exist $C' \in \closeds{X}$ such that $x \in \carrier[X]$ and $x \notin C' \in \closeds{X}$ and there exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. + There exists $U',V' \in \opens[X]$ such that $x \in U'$ and $C' \subseteq V'$ and $U' \inter V' = \emptyset$. + $U'$ is disjoint from $V'$. + $x \in U'$. + $x \notin C' \subseteq V'$. + $U',V' \in \opens[X]$. + $C' \in \closeds{X}$. + We show that there exist $K \in \closeds{X}$ such that $x \notin K \ni y$. + \begin{subproof} + $X$ is Kolmogorov. + For all $x',y'\in\carrier[X]$ such that $x'\neq y'$ there exist $H\in\opens[X]$ such that $x'\in H\not\ni y'$ or $x'\notin H\ni y'$. + we show that there exist $H \in \opens[X]$ such that $x \notin H \ni y$ or $y \notin H \ni x$. + \begin{subproof} + Omitted. + \end{subproof} + $H \subseteq \carrier[X]$ by \cref{opens_type,subseteq}. + Since $\carrier[X] \ni x \notin H$ or $\carrier[X] \ni y \notin H$, we have there exist $c \in H$. + Then $H \neq \carrier[X]$. + Since $y \in H$ or $x \in H$, we have $H \neq \emptyset$. + Let $K = \carrier[X] \setminus H$. + $K$ is inhabited. + $K \in \closeds{X}$ by \cref{complement_of_open_is_closed}. + $x \notin K \ni y$ or $y \notin K \ni x$. + \begin{byCase} + \caseOf{$y \in K$.} Trivial. + \caseOf{$y \notin K$.} + Then there exist $U'',V'' \in \opens[X]$ such that $x \in U''$ and $K \subseteq V''$ and $U'' \inter V'' = \emptyset$ by \cref{is_regular}. + Let $K' = \carrier[X] \setminus U''$. + $x \in K'$. + $K' \in \closeds{X}$. + \end{byCase} + + + \end{subproof} + + Follows by assumption. \end{subproof} - $y \in V$. + $y \in V$ by assumption. Follows by assumption. -\end{proof} -% for all $x,y\in\carrier[X]$ such that $x\neq y$ -% there exist $U, V\in\opens[X]$ such that -% $x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
\ No newline at end of file + +%\end{proof} |
