diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-13 13:01:14 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-04-13 13:01:14 +0200 |
| commit | 6eea98cf3e66a07251e6370ea948898799d5055b (patch) | |
| tree | 99e869dd56fc529cbdc9d55bef0a6c3618fccd47 /library | |
| parent | 5c297fe2fde2ac9a926ba1911aa72d383450ce98 (diff) | |
first formalisation of addition on naturals
We try to Implement the Addition on natural numbers by a relation on N \times N to N such that some of the axioms of the addition holds
Diffstat (limited to 'library')
| -rw-r--r-- | library/nat.tex | 40 |
1 files changed, 38 insertions, 2 deletions
diff --git a/library/nat.tex b/library/nat.tex index 529ba54..849c610 100644 --- a/library/nat.tex +++ b/library/nat.tex @@ -1,5 +1,5 @@ \import{set/suc.tex} - +\import{set.tex} \section{Natural numbers} @@ -17,5 +17,41 @@ \end{axiom} \begin{abbreviation}\label{naturalnumber} - $n$ is a natural number iff $n\in\naturals$. + $n$ is a natural number iff $n\in \naturals$. \end{abbreviation} + +\begin{lemma}\label{emptyset_in_naturals} + $\emptyset\in\naturals$. +\end{lemma} + +%\begin{abbreviation}\label{zero_is_emptyset} +% $0 = \emptyset$. +%\end{abbreviation} + +%\begin{definition}\label{additionpair} +% $x$ is an Additionpair iff $x \in ((\naturals\times \naturals)\times \naturals)$. +%\end{definition} + +%\begin{lemma}\label{zero_is_in_naturals} +% Let $n\in \naturals$. $((n, \emptyset), n)$ is an Additionpair. +%\end{lemma} + +%\begin{definition}\label{valid_additionpair} +% $x$ is a vaildaddition iff there exist $n \in \naturals$ we have $x = ((0, n), n)$. +%\end{definition} + + + +\begin{axiom}\label{addpair_set} + $\addpair$ is a set. +\end{axiom} + + + + +\begin{axiom}\label{addition_naturals} + $x \in \addpair$ iff $x \in ((\naturals\times \naturals)\times \naturals)$ and there exist $n \in \naturals$ such that $x = ((n, \emptyset), n)$. +\end{axiom} + + + |
