diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-03-31 18:57:17 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-03-31 18:57:17 +0200 |
| commit | 9abb88060e5bb6405e603dcbe499794e3e181040 (patch) | |
| tree | 72f5d7a039397429056a687573bf905854ea6c07 /library | |
| parent | ffcd13eb8c12f820ec7a49afdcb4b55479443e0d (diff) | |
Possible_Bug
In File test.tex line 51 could not be proven, error massage is in the new file error.txt
Diffstat (limited to 'library')
| -rw-r--r-- | library/everything.tex | 1 | ||||
| -rw-r--r-- | library/test.tex | 54 |
2 files changed, 55 insertions, 0 deletions
diff --git a/library/everything.tex b/library/everything.tex index 9b85f83..599bc27 100644 --- a/library/everything.tex +++ b/library/everything.tex @@ -26,6 +26,7 @@ \import{topology/basis.tex} \import{topology/disconnection.tex} \import{topology/separation.tex} +\import{test.tex} \begin{proposition}\label{trivial} $x = x$. diff --git a/library/test.tex b/library/test.tex new file mode 100644 index 0000000..d30bbba --- /dev/null +++ b/library/test.tex @@ -0,0 +1,54 @@ +\import{algebra/semigroup.tex} +\section{monoid} + +\begin{struct}\label{monoid} + A monoid $A$ is a semigroup equipped with + \begin{enumerate} + \item $\neutral$ + \end{enumerate} + such that + \begin{enumerate} %muss hier ein enumerate hin + \item\label{monoid_type} $\neutral[A]\in \carrier[A]$. + \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. + \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. + \end{enumerate} +\end{struct} + + +\section{Group} + +\begin{struct}\label{group} + A group $A$ is a monoid such that + \begin{enumerate} + \item\label{group_inverse} for all $a \in \carrier[A]$ there exist $b \in \carrier[A]$ such that $\mul[A](a, b) =\neutral[A]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{cfourdot} + $a\cdot b = \mul(a,b)$. +\end{abbreviation} + +\begin{lemma}\label{neutral_is_idempotent} + Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$. +\end{lemma} + +\begin{proposition}\label{leftinverse_eq_rightinverse} + Let $G$ be a group and assume $a \in G$. + Then there exist $b\in G$ + such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$. +\end{proposition} +\begin{proof} + There exist $b \in G$ such that $a \cdot b = \neutral[G]$. + There exist $c \in G$ such that $b \cdot c = \neutral[G]$. + $a \cdot b = \neutral[G]$. + $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$. + $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. + $a \cdot \neutral[G] = \neutral[G] \cdot c$. + $c = c \cdot \neutral[G]$. + $c = \neutral[G] \cdot c$. + $a \cdot \neutral[G] = c \cdot \neutral[G]$. + $a \cdot \neutral[G] = c$ by \cref{monoid_right}. + $a = c$ by \cref{monoid_right}. + $b \cdot a = b \cdot c$. + $b \cdot a = \neutral[G]$. +\end{proof}
\ No newline at end of file |
