diff options
| author | adelon <22380201+adelon@users.noreply.github.com> | 2025-07-08 22:16:01 +0200 |
|---|---|---|
| committer | adelon <22380201+adelon@users.noreply.github.com> | 2025-07-08 22:16:01 +0200 |
| commit | da6d425281534407a92ce18a22584905a7847a39 (patch) | |
| tree | 2449971b42b96b566039e0c2c9a575481ae51f38 /library | |
| parent | 9d34eebafc87e6bce476ccc487a88b440315089b (diff) | |
Update lemma name
Diffstat (limited to 'library')
| -rw-r--r-- | library/function.tex | 2 | ||||
| -rw-r--r-- | library/ordinal.tex | 4 | ||||
| -rw-r--r-- | library/topology/urysohn.tex | 4 | ||||
| -rw-r--r-- | library/topology/urysohntwo.tex | 8 |
4 files changed, 9 insertions, 9 deletions
diff --git a/library/function.tex b/library/function.tex index 47d399f..7616593 100644 --- a/library/function.tex +++ b/library/function.tex @@ -465,7 +465,7 @@ Then $f(x) = \emptyset$. \end{proposition} \begin{proof} - $\img{f}{\{x\}} = \emptyset$ by \cref{setext,notin_emptyset,img_singleton_iff,dom_intro}. + $\img{f}{\{x\}} = \emptyset$ by \cref{setext,emptyset,img_singleton_iff,dom_intro}. Follows by \cref{apply,unions_emptyset}. \end{proof} diff --git a/library/ordinal.tex b/library/ordinal.tex index 6f924c1..c092fa8 100644 --- a/library/ordinal.tex +++ b/library/ordinal.tex @@ -559,7 +559,7 @@ Then $\alpha\subseteq\beta$. \end{lemma} \begin{proof} Suppose not. - Then $\emptyset\precedes \emptyset$ by \cref{notin_emptyset,limit_ordinal}. + Then $\emptyset\precedes \emptyset$ by \cref{emptyset,limit_ordinal}. Thus $\emptyset\in \emptyset$. Contradiction. \end{proof} @@ -636,4 +636,4 @@ Then $\alpha\subseteq\beta$. % $\emptyset\precedes \naturals$. % If $n\in \naturals$, then $\suc{n}\in\naturals$. %\end{proof} -%
\ No newline at end of file +% diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index bfbf54d..22508e1 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -752,8 +752,8 @@ This is the first attempt to prove Urysohns Lemma with the usage of struct. % % Omitted. % -% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. -% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. +% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,emptyset,funs_type_apply,neg,minus,abs_behavior1}. +% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,emptyset,funs_type_apply,neg,minus,abs_behavior1}. % \end{subproof} % Omitted. % \end{subproof} diff --git a/library/topology/urysohntwo.tex b/library/topology/urysohntwo.tex index 68faeac..eda3c32 100644 --- a/library/topology/urysohntwo.tex +++ b/library/topology/urysohntwo.tex @@ -164,7 +164,7 @@ There exists no $x$ such that $x \in \zero$. \end{proposition} \begin{proof} - Follows by \cref{notin_emptyset}. + Follows by \cref{emptyset}. \end{proof} \begin{proposition}\label{one_is_positiv} @@ -473,7 +473,7 @@ \begin{proof}[Proof by \in-induction on $n$] Assume $n \in \naturals$. Suppose $Y$ has cardinality $n$. - $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,notin_emptyset}. + $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,emptyset}. \begin{byCase} \caseOf{$n = \zero$.} Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}. @@ -817,7 +817,7 @@ We have $A \subseteq A'$. We have $\at{U_0}{\zero} = A$ by assumption. We have $\at{U_0}{1}= A'$ by assumption. - Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,notin_emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}. + Follows by \cref{powerset_elim,emptyset_subseteq,union_as_unions,union_absorb_subseteq_left,subseteq_pow_unions,ran_converse,subseteq,subseteq_antisymmetric,suc_subseteq_intro,apply,powerset_emptyset,emptyset_is_ordinal,emptyset,ordinal_elem_connex,omega_is_an_ordinal,prec_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} @@ -835,7 +835,7 @@ \caseOf{$m = \zero$.} Trivial. \caseOf{$m \neq \zero$.} - Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}. + Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,emptyset,subseteq,union_as_unions,natural_number_is_ordinal}. \end{byCase} \end{byCase} \end{subproof} |
