summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-06-16 23:05:43 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-06-16 23:05:43 +0200
commite82c1b73bba5987a176d6d33bd1dbcc5bedf0bbd (patch)
treee95f8b17688be4f9e66f82109851ab88369d4b5f /library
parentab4ddd9d49349ddb781514b6b0e9060db5b66a22 (diff)
First implementation of basic relations of closed and open.
Not finished.
Diffstat (limited to 'library')
-rw-r--r--library/topology/topological-space.tex223
1 files changed, 147 insertions, 76 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index dd236bb..2c6b98c 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -161,12 +161,21 @@
\begin{proposition}\label{carrier_is_closed}
Let $X$ be a topological space.
- Then $\emptyset$ is closed in $X$.
+ Then $\carrier[X]$ is closed in $X$.
\end{proposition}
\begin{proof}
$\carrier[X]\setminus \carrier[X] = \emptyset$.
+ Follows by \cref{emptyset_open,is_closed_in}.
\end{proof}
+\begin{proposition}\label{opens_minus_closed_is_open}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Suppose $B$ is closed in $X$.
+ Then $A \setminus B$ is open in $X$.
+\end{proposition}
+
\begin{definition}[Closed sets]\label{closeds}
$\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$.
\end{definition}
@@ -216,9 +225,6 @@
Follows by \cref{inters_singleton,closure}.
\end{proof}
-
-%Def: $\inters{A} = \{ x\in\unions{A}\mid \text{for all $a\in A$ we have $x\in a$} \}$.
-
\begin{proposition}\label{subseteq_inters_iff_to_right}
Let $A,F$ be sets.
Suppose $A \subseteq \inters{F}$.
@@ -228,16 +234,17 @@
\begin{proposition}\label{subseteq_of_all_then_subset_of_union}
Let $A,F$ be sets.
+ Suppose $F$ is inhabited. %TODO: Remove!!
Suppose for all $X \in F$ we have $A \subseteq X$.
Then $A \subseteq \unions{F}$.
\end{proposition}
\begin{proof}
\begin{byCase}
- \caseOf{$F$ is empty.}
- For all $X$ we have $X \notin F$.
- If $X \in F$ and $A \in X$ then $A \in F$.
- %There exist $X \in F$.
- Contradiction by assumption.
+ %\caseOf{$F$ is empty.}
+ %For all $X$ we have $X \notin F$.
+ %If $X \in F$ and $A \in X$ then $A \in F$.
+ %Contradiction by assumption.
+ %Omitted.
\caseOf{$F$ is inhabited.}
There exist $X \in F$ such that $X \subseteq \unions{F}$.
$A \subseteq X \subseteq \unions{F}$.
@@ -246,6 +253,7 @@
\begin{proposition}\label{subseteq_inters_iff_to_left}
Let $A,F$ be sets.
+ Suppose $F$ is inhabited. % TODO:Remove!!
Suppose for all $X \in F$ we have $A \subseteq X$.
Then $A \subseteq \inters{F}$.
\end{proposition}
@@ -253,71 +261,157 @@
\begin{byCase}
\caseOf{$A = \emptyset$.}Trivial.
\caseOf{$A \neq \emptyset$.}
+ $F$ is inhabited.
It suffices to show that for all $a \in A$ we have $a \in \inters{F}$.
Fix $a \in A$.
For all $X \in F$ we have $a \in X$.
$A \subseteq \unions{F}$.
$a \in \unions{F}$.
\end{byCase}
-
- %It suffices to show that for all $a \in A$ we have $x \in \inters{F}$. % This have been proven!!! But it shouldn't.
-
-% we show that there exist $Y \in F$ such that $a \in Y$.
-% \begin{subproof}
-
-% \begin{byCase}
-% \caseOf{$a = \emptyset$.}
-% $\emptyset \subseteq \inters{F}$.
-% $\emptyset \in \emptyset$.
-% \caseOf{$a \neq \emptyset$.} Omitted.
-% \end{byCase}
-
- %cases by a = \emptyset
- %case a \neq \emptyset
-% \end{subproof}
\end{proof}
-%------------------------ Only example -------------------------------------
\begin{proposition}\label{subseteq_inters_iff_new}
+ Suppose $F$ is inhabited.
$A \subseteq \inters{F}$ iff for all $X \in F$ we have $A \subseteq X$.
\end{proposition}
-%\begin{proof}
-% We show that if $A \subseteq \inters{F}$ then for all $X \in F$ we have $A \subseteq X$.
-% \begin{subproof}
- %It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$.
- %Fix $a \in A$.
- %Fix $X \in F$. %TODO: Missmatched Assume!
-
-% It suffices to show that for all $a,X$ such that $a \in A$ and $X \in F$ we have $a \in X$.
-% Follows by \cref{inters}.
-% \end{subproof}
-% We show that for all $X \in F$ such that $A \subseteq X$ we have $A \subseteq \inters{F}$.
-% \begin{subproof}
-% Omitted.
-% \end{subproof}
-%\end{proof}
\begin{proposition}\label{set_is_subseteq_to_closure_of_the_set}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$A \subseteq \closure{A}{X}$.
\end{proposition}
\begin{proof}
- %$\closures{A}{X}$ is inhabited. %TODO: Inhabited why does "subseteq_inters_iff" has inhabited as assumtion??
- For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$.
- Therefore $A \subseteq \inters{\closures{A}{X}}$.
+ \begin{byCase}
+ \caseOf{$A = \emptyset$.}
+ Trivial.
+ \caseOf{$A \neq \emptyset$.}
+ We show that $\carrier[X] \in \closures{A}{X}$.
+ \begin{subproof}
+ $\carrier[X]$ is closed in $X$.
+ $\carrier[X] \in \pow{\carrier[X]}$.
+ \end{subproof}
+ $\closures{A}{X}$ is inhabited.
+ For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$.
+ Therefore $A \subseteq \inters{\closures{A}{X}}$.
+ \end{byCase}
\end{proof}
\begin{proposition}\label{complement_of_closure_of_complement_of_x_subseteq_x}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$.
\end{proposition}
\begin{proof}
It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$.
If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proof}
+\begin{proposition}\label{complement_of_closed_is_open}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Suppose $A$ is closed in $X$.
+ Then $\carrier[X] \setminus A$ is open in $X$.
+\end{proposition}
+
+\begin{proposition}\label{complement_of_open_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Then $\carrier[X] \setminus A$ is closed in $X$.
+\end{proposition}
+
+\begin{proposition}\label{intersection_of_closed_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ are closed in $X$.
+ Suppose $B$ are closed in $X$.
+ Then $A \inter B$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$.
+ $(\carrier[X] \setminus A) \union (\carrier[X] \setminus B) \in \opens[X]$.
+ $A \inter B = \carrier[X] \setminus ((\carrier[X] \setminus A) \union (\carrier[X] \setminus B))$.
\end{proof}
-\begin{proposition}%[Complement of interior equals closure of complement]
-\label{complement_interior_eq_closure_complement}
+\begin{proposition}\label{union_of_closed_is_closed}
Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ are closed in $X$.
+ Suppose $B$ are closed in $X$.
+ Then $A \union B$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$.
+ $(\carrier[X] \setminus A) \inter (\carrier[X] \setminus B) \in \opens[X]$.
+ $A \union B = \carrier[X] \setminus ((\carrier[X] \setminus A) \inter (\carrier[X] \setminus B))$.
+\end{proof}
+
+\begin{proposition}\label{closed_minus_open_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Suppose $B$ is closed in $X$.
+ Then $B \setminus A$ is closed in $X$.
+\end{proposition}
+
+
+
+\begin{proposition}\label{intersection_of_closed_is_closed_infinite}
+ Let $X$ be a topological space.
+ Suppose $F \subseteq \pow{\carrier[X]}$.
+ Suppose for all $A \in F$ we have $A$ is closed in $X$.
+ Suppose $F$ is inhabited.
+ Then $\inters{F}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ Let $F' = \{Y \in \pow{\carrier[X]} \mid \text{there exists $C \in F$ such that $Y = \carrier[X] \setminus C$ }\} $.
+ For all $Y \in F'$ we have $Y$ is open in $X$.
+ $\unions{F'}$ is open in $X$.
+ $\unions{F'}, \inters{F} \subseteq \carrier[X]$.
+ We show that $\inters{F} = \carrier[X] \setminus (\unions{F'})$.
+ \begin{subproof}
+ We show that for all $a \in \inters{F}$ we have $a \in \carrier[X] \setminus (\unions{F'})$.
+ \begin{subproof}
+ Fix $a \in \inters{F}$.
+ $a \in \carrier[X]$.
+ For all $A \in F$ we have $a \in A$.
+ For all $A \in F$ we have $a \notin (\carrier[X] \setminus A)$.
+ Then $a \notin \unions{F'}$.
+ Therefore $a \in \carrier[X] \setminus (\unions{F'})$.
+ \end{subproof}
+
+ We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$.
+ \begin{subproof}
+ Fix $a \in \carrier[X] \setminus (\unions{F'})$.
+ \begin{byCase}
+ \caseOf{$a = \emptyset$.}
+ Omitted.
+ \caseOf{$a \neq \emptyset$.}
+ $a \in \carrier[X]$.
+ $a \notin \unions{F'}$.
+ For all $A \in F'$ we have $a \notin A$.
+ For all $A \in F'$ we have $a \in (\carrier[X] \setminus A)$.
+ For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$.
+ For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$.
+ For all $Y \in F$ we have $a \in Y$.
+ $\inters{F}$ is inhabited.
+ Therefore $a \in \inters{F}$.
+ \end{byCase}
+ \end{subproof}
+ Follows by set extensionality.
+ \end{subproof}
+ Follows by \cref{complement_of_open_is_closed}.
+\end{proof}
+
+\begin{proposition}\label{closure_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\closure{A}{X}$ is closed in $X$.
+\end{proposition}
+
+\begin{proposition}\label{complement_interior_eq_closure_complement}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
@@ -327,47 +421,24 @@
Suppose not.
$x \notin \closure{(\carrier[X]\setminus A)}{X}$.
$x \in \carrier[X]$.
- For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \in A \implies x \notin B$.
- For all $x \in X$ such that $A \union B = X$ and $A \inter B = \emptyset$ we have $x \notin A \implies x \in B$.
$(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$.
- %$(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$. %TODO:
$x \in A$.
$x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$.
- $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. %TODO:
+ $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$.
Contradiction.
\end{subproof}
-
$\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$.
-
- $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. %TODO:
-
- %We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
- %\begin{subproof}
- % Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
- % \begin{byCase}
- % \caseOf{$x \in \carrier[X] \setminus A$.}
- % Trivial.
- % \caseOf{$x \in \carrier[X] \setminus A \inter \interior{A}{X}$.}
- % $\carrier[X] \setminus \closure{A}{X} \in \opens[X]$.
- % $\interior{A}{X} \in \opens[X]$.
- % Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X} \in \opens[X]$.
- % %$\carrier[X] \setminus \closure{A}{X}$ is open. TODO: is open throws an error!
- % %$\interior{A}{X}$ is open.
- % %Therefore $\carrier[X] \setminus \closure{A}{X} \inter \interior{A}{X}$ is open.
- %
- % \end{byCase}
- %\end{subproof}
- %Suffices reduction by \cref ::::: reduction => goal.
-
-
- %Omitted. % Use general De Morgan's Law in Pow|X|
+ $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$.
\end{proof}
+
\begin{definition}[Frontier]\label{frontier}
$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$.
\end{definition}
-
+\begin{proposition}\label{safe} %TODO: Remove!!!
+ $x \neq x$.
+\end{proposition}
\begin{proposition}%[Frontier as intersection of closures]
\label{frontier_as_inter}
@@ -375,7 +446,7 @@
\end{proposition}
\begin{proof}
% TODO
- Omitted.
+ %Omitted.
%$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition)
%$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement
%$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement