summaryrefslogtreecommitdiff
path: root/megalodon/library
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2025-07-08 22:16:01 +0200
committeradelon <22380201+adelon@users.noreply.github.com>2025-07-08 22:16:01 +0200
commitda6d425281534407a92ce18a22584905a7847a39 (patch)
tree2449971b42b96b566039e0c2c9a575481ae51f38 /megalodon/library
parent9d34eebafc87e6bce476ccc487a88b440315089b (diff)
Update lemma name
Diffstat (limited to 'megalodon/library')
-rw-r--r--megalodon/library/cardinal.mg2
-rw-r--r--megalodon/library/relation/equivalence.mg2
-rw-r--r--megalodon/library/set.mg2
3 files changed, 3 insertions, 3 deletions
diff --git a/megalodon/library/cardinal.mg b/megalodon/library/cardinal.mg
index 4d2af41..19991b2 100644
--- a/megalodon/library/cardinal.mg
+++ b/megalodon/library/cardinal.mg
@@ -36,7 +36,7 @@ Admitted.
Theorem subset_witness : (forall A B,(((subset A B)->(exists b,(((elem b B)/\(notelem b A))))))).
Admitted.
Definition family_of_subsets := fun x0 x1 : set => (forall A,(((elem A x0)->(subseteq A x1)))).
-Fact notin_emptyset : (forall a,((notelem a (emptyset)))).
+Fact emptyset : (forall a,((notelem a (emptyset)))).
Admitted.
Definition inhabited := fun A: set => (exists a,((elem a A))).
Definition empty := fun x0 : set => ~((inhabited x0)).
diff --git a/megalodon/library/relation/equivalence.mg b/megalodon/library/relation/equivalence.mg
index e9c8211..cc93394 100644
--- a/megalodon/library/relation/equivalence.mg
+++ b/megalodon/library/relation/equivalence.mg
@@ -35,7 +35,7 @@ Admitted.
Theorem subset_witness : (forall A B,(((subset A B)->(exists b,(((elem b B)/\(notelem b A))))))).
Admitted.
Definition family_of_subsets := fun x0 x1 : set => (forall A,(((elem A x0)->(subseteq A x1)))).
-Fact notin_emptyset : (forall a,((notelem a (emptyset)))).
+Fact emptyset : (forall a,((notelem a (emptyset)))).
Admitted.
Definition inhabited := fun A: set => (exists a,((elem a A))).
Definition empty := fun x0 : set => ~((inhabited x0)).
diff --git a/megalodon/library/set.mg b/megalodon/library/set.mg
index 3606b4e..7c86a69 100644
--- a/megalodon/library/set.mg
+++ b/megalodon/library/set.mg
@@ -36,7 +36,7 @@ Admitted.
Theorem subset_witness : (forall A B,(((subset A B)->(exists b,(((elem b B)/\(notelem b A))))))).
Admitted.
Definition family_of_subsets := fun x0 x1 : set => (forall A,(((elem A x0)->(subseteq A x1)))).
-Fact notin_emptyset : (forall a,((notelem a (emptyset)))).
+Fact emptyset : (forall a,((notelem a (emptyset)))).
Admitted.
Definition inhabited := fun A: set => (exists a,((elem a A))).
Definition empty := fun x0 : set => ~((inhabited x0)).