summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--library/everything.tex8
-rw-r--r--library/numbers.tex26
3 files changed, 31 insertions, 4 deletions
diff --git a/.gitignore b/.gitignore
index cd7aa0f..656e54b 100644
--- a/.gitignore
+++ b/.gitignore
@@ -41,6 +41,7 @@ premseldump/
haddocks/
stack.yaml.lock
zf*.svg
+check/
diff --git a/library/everything.tex b/library/everything.tex
index 783679f..29b97b7 100644
--- a/library/everything.tex
+++ b/library/everything.tex
@@ -29,12 +29,12 @@
\import{topology/basis.tex}
\import{topology/disconnection.tex}
\import{topology/separation.tex}
-\import{numbers.tex}
+%\import{numbers.tex}
\begin{proposition}\label{trivial}
$x = x$.
\end{proposition}
-%\begin{proposition}\label{safe}
-% Contradiction.
-%\end{proposition}
+\begin{proposition}\label{safe}
+ Contradiction.
+\end{proposition}
diff --git a/library/numbers.tex b/library/numbers.tex
index 1837ae8..f13214d 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -1,5 +1,6 @@
\import{order/order.tex}
\import{relation.tex}
+\import{set/suc.tex}
\section{The real numbers}
@@ -15,6 +16,11 @@
$x \rmul y$ is a set.
\end{signature}
+%Structure TODO:
+% Take as may axioms as needed - Tarski Axioms of reals
+%Implement Naturals -> Integer -> rationals -> reals
+
+
\subsection{Basic axioms of the reals}
\begin{axiom}\label{reals_axiom_zero_in_reals}
@@ -29,6 +35,26 @@
$\zero \neq 1$.
\end{axiom}
+\begin{inductive}\label{naturals_subset_reals}
+ Define $\naturals \subseteq \reals$ inductively as follows.
+ \begin{enumerate}
+ \item $\zero \in \naturals$.
+ \item If $n\in \naturals$, then $\successor{n} \in \naturals$.
+ \end{enumerate}
+\end{inductive}
+
+%\begin{axiom}\label{negativ_is_set}
+% $\negativ{x}$ is a set.
+%\end{axiom}
+
+%\begin{axiom}\label{negativ_of}
+% $\negativ{x} \in \reals$ iff $x\in \reals$.
+%\end{axiom}
+%
+%\begin{axiom}\label{negativ_behavior}
+% $x + \negativ{x} = \zero$.
+%\end{axiom}
+
\begin{definition}\label{reals_definition_order_def}
$x < y$ iff there exist $z \in \reals$ such that $x + (z \rmul z) = y$.
\end{definition}