diff options
| -rw-r--r-- | library/topology/topological-space.tex | 40 |
1 files changed, 25 insertions, 15 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index 73b7ec5..8da29d3 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -382,7 +382,9 @@ Let $F'' = F \setminus \{U\}$. There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$. \caseOf{$\inters{F} \neq \emptyset$.} + Fix $a \in \carrier[X] \setminus (\unions{F'})$. + $\inters{F}$ is inhabited. $a \in \carrier[X]$. $a \notin \unions{F'}$. For all $A \in F'$ we have $a \notin A$. @@ -390,7 +392,6 @@ For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$. For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$. For all $Y \in F$ we have $a \in Y$. - $\inters{F}$ is inhabited. Therefore $a \in \inters{F}$. \end{byCase} \end{subproof} @@ -427,26 +428,35 @@ Follows by \cref{closure,closeds,inters_subseteq_elem,closures}. \end{proof} +\begin{proposition}\label{interior_is_maximal} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + For all $Y \in \opens[X]$ such that $Y \subseteq A$ we have $Y \subseteq \interior{A}{X}$. +\end{proposition} + \begin{proposition}\label{complement_interior_eq_closure_complement} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} - We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$. - \begin{subproof} - Fix $x \in \carrier[X]\setminus\interior{A}{X}$. - Suppose not. - $x \notin \closure{(\carrier[X]\setminus A)}{X}$. - $x \in \carrier[X]$. - $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$. - $x \in A$. - $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$. - $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. - Contradiction. - \end{subproof} - $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$. - $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. + We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$. + \begin{subproof} + + Fix $x \in \carrier[X]\setminus\interior{A}{X}$. + Suppose not. + $x \notin \closure{(\carrier[X]\setminus A)}{X}$. + $x \in \carrier[X]$. + $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$. + $x \in A$. + $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$. + $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$. + There exist $U \in \opens[X]$ such that $x \in U$ and $U\subseteq A$. + $U \subseteq \interior{A}{X}$. + Contradiction. + \end{subproof} + $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$. + $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$. \end{proof} |
