diff options
| -rw-r--r-- | library/logic/propositional.tex | 35 |
1 files changed, 35 insertions, 0 deletions
diff --git a/library/logic/propositional.tex b/library/logic/propositional.tex new file mode 100644 index 0000000..716de54 --- /dev/null +++ b/library/logic/propositional.tex @@ -0,0 +1,35 @@ +\import{set.tex} +\import{nat.tex} + + +\begin{datatype} +The set $\propform$ is generated as follows. +\begin{enumerate} + \item if $n\in\naturals$, then $\propvar{n}\in\propform$ + \item $\propbot\in\propform$ + \item if $p, q\in\propform$, then $p\propto q\in\propform$ +\end{enumerate} +\end{datatype} + +\begin{abbreviation} + $\propnot p = p\propto\propbot$. +\end{abbreviation} + +\begin{inductive} + \begin{enumerate} + \item (Detachment) If $\deducible{p}$ and $\deducible{p\propto q}$, then $\deducible{q}$ + \item (Implosion) $\deducible{p\propto q\propto p}$ + \item (Chain) $\deducible{(p\propto q\propto r)\propto(p\propto q)\propto(p\propto r)}$ + \item (Negation) $\propnot\propnot p\to p$ + \end{enumerate} +\end{inductive} + +\begin{lemma} + Suppose $\deducible{q}$. + Then $\deducible{p\propto q}$. +\end{lemma} + +\begin{primrec} + Recursively define a predicate $\propeval{-}{-}$ on $\propform$ as follows. + % TODO continue... +\end{primrec} |
