summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/separation.tex33
1 files changed, 31 insertions, 2 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
index f70cb50..f055495 100644
--- a/library/topology/separation.tex
+++ b/library/topology/separation.tex
@@ -73,10 +73,39 @@
\begin{proposition}\label{teeone_implies_singletons_closed}
Let $X$ be a \teeone-space.
- Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$.
+ Assume $x \in \carrier[X]$.
+ Then $\{x\}$ is closed in $X$.
+ %Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. Ambigus Phrase. if Omitted is ereased.
\end{proposition}
\begin{proof}
- Omitted.
+ %Omitted.
+ %Fix $x \in X$.
+ Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$.
+ For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
+
+ $\unions{V} \in \opens[X]$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$.
+ We show that $\carrier[X] \setminus \{x\} = \unions{V}$.
+ \begin{subproof}
+ We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$.
+ \begin{subproof}
+ Fix $y \in \carrier[X] \setminus \{x\}$.
+ $y \neq x$.
+ $y \in \carrier[X]$.
+ $y \in \unions{V}$.
+ \end{subproof}
+ For all $y \in \unions{V}$ we have $y \notin \{x\}$.
+ For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
+ Follows by set extensionality.
+ \end{subproof}
+
+
+
+
+ % Let $U_{y} \in \opens[X]$ such that $x \neq y \in X$. Error: unexpected '{' expecting digit
+ %For all $y$ there exists $U$ such that $x \neq y$ and $y \in U$ and $U \in \opens[X]$.
+
% TODO
% Choose for every y distinct from x and open subset U_y containing y but not x.
% The union U of all the U_y is open.