diff options
| -rw-r--r-- | library/topology/urysohn.tex | 23 |
1 files changed, 18 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index ba9780a..c3c72f0 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -503,11 +503,24 @@ The first tept will be a formalisation of chain constructions. -% Note this could maybe reslove some issues!!!! + \begin{definition}\label{sequencetwo} $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. \end{definition} +\begin{proposition}\label{sequence_existence} + Suppose $N \subseteq \naturals$. + Suppose $M \subseteq \naturals$. + Suppose $N = M$. + Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +\end{proposition} +\begin{proof} + Let $f(x) = x$ for $x \in N$. + Let $Z=(N,f,M)$. +\end{proof} +%The proposition above and the definition prove false together with +% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + @@ -544,7 +557,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} - For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. + %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$. \begin{subproof} @@ -824,6 +837,6 @@ The first tept will be a formalisation of chain constructions. % \end{subproof} \end{proof} -%\begin{theorem}\label{safe} -% Contradiction. -%\end{theorem} +\begin{theorem}\label{safe} + Contradiction. +\end{theorem} |
