diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-14 10:50:26 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-14 10:50:26 +0200 |
| commit | 5a7450eedc020867ee52ae9f1ecb6def7aa998bb (patch) | |
| tree | 4ffcb59559ad4631e49802ef1aa6e7e19b3031da | |
| parent | ee24a73a01608125e6648f7b66d9c679e955009d (diff) | |
The added proposition and definition should have
resloved some proofing complications, but
they can prove flase together with lemmas about
ordinal, the exat lemma are in urysohn.tex at
line 522.
| -rw-r--r-- | library/topology/urysohn.tex | 23 |
1 files changed, 18 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index ba9780a..c3c72f0 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -503,11 +503,24 @@ The first tept will be a formalisation of chain constructions. -% Note this could maybe reslove some issues!!!! + \begin{definition}\label{sequencetwo} $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. \end{definition} +\begin{proposition}\label{sequence_existence} + Suppose $N \subseteq \naturals$. + Suppose $M \subseteq \naturals$. + Suppose $N = M$. + Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +\end{proposition} +\begin{proof} + Let $f(x) = x$ for $x \in N$. + Let $Z=(N,f,M)$. +\end{proof} +%The proposition above and the definition prove false together with +% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + @@ -544,7 +557,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} - For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. + %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$. \begin{subproof} @@ -824,6 +837,6 @@ The first tept will be a formalisation of chain constructions. % \end{subproof} \end{proof} -%\begin{theorem}\label{safe} -% Contradiction. -%\end{theorem} +\begin{theorem}\label{safe} + Contradiction. +\end{theorem} |
