summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex23
1 files changed, 18 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index ba9780a..c3c72f0 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -503,11 +503,24 @@ The first tept will be a formalisation of chain constructions.
-% Note this could maybe reslove some issues!!!!
+
\begin{definition}\label{sequencetwo}
$Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
\end{definition}
+\begin{proposition}\label{sequence_existence}
+ Suppose $N \subseteq \naturals$.
+ Suppose $M \subseteq \naturals$.
+ Suppose $N = M$.
+ Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo.
+\end{proposition}
+\begin{proof}
+ Let $f(x) = x$ for $x \in N$.
+ Let $Z=(N,f,M)$.
+\end{proof}
+%The proposition above and the definition prove false together with
+% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl
+
@@ -544,7 +557,7 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
- For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
+ %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
@@ -824,6 +837,6 @@ The first tept will be a formalisation of chain constructions.
% \end{subproof}
\end{proof}
-%\begin{theorem}\label{safe}
-% Contradiction.
-%\end{theorem}
+\begin{theorem}\label{safe}
+ Contradiction.
+\end{theorem}