diff options
| -rw-r--r-- | library/numbers.tex | 191 |
1 files changed, 135 insertions, 56 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index f13214d..4b5d10b 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -2,6 +2,7 @@ \import{relation.tex} \import{set/suc.tex} + \section{The real numbers} \begin{signature} @@ -16,12 +17,47 @@ $x \rmul y$ is a set. \end{signature} +\begin{axiom}\label{reals_axiom_order} + $\lt[\reals]$ is an order on $\reals$. +\end{axiom} + +\begin{abbreviation}\label{lesseq_on_reals} + $x \leq y$ iff $(x,y) \in \lt[\reals]$. +\end{abbreviation} + +\begin{abbreviation}\label{less_on_reals} + $x < y$ iff it is wrong that $y \leq x$. +\end{abbreviation} + +\begin{abbreviation}\label{greater_on_reals} + $x > y$ iff $y \leq x$. +\end{abbreviation} + +\begin{abbreviation}\label{greatereq_on_reals} + $x \geq y$ iff it is wrong that $x < y$. +\end{abbreviation} + +\begin{abbreviation}\label{is_positiv} + $x$ is positiv iff $x > \zero$. +\end{abbreviation} + + %Structure TODO: % Take as may axioms as needed - Tarski Axioms of reals %Implement Naturals -> Integer -> rationals -> reals -\subsection{Basic axioms of the reals} +\subsection{Creation of natural numbers} + +\subsubsection{Defenition and axioms} + +\begin{abbreviation}\label{inductive_set} + $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. +\end{abbreviation} + +\begin{abbreviation}\label{zero_is_emptyset} + $\zero = \emptyset$. +\end{abbreviation} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. @@ -35,49 +71,101 @@ $\zero \neq 1$. \end{axiom} -\begin{inductive}\label{naturals_subset_reals} - Define $\naturals \subseteq \reals$ inductively as follows. - \begin{enumerate} - \item $\zero \in \naturals$. - \item If $n\in \naturals$, then $\successor{n} \in \naturals$. - \end{enumerate} -\end{inductive} - -%\begin{axiom}\label{negativ_is_set} -% $\negativ{x}$ is a set. -%\end{axiom} - -%\begin{axiom}\label{negativ_of} -% $\negativ{x} \in \reals$ iff $x\in \reals$. -%\end{axiom} -% -%\begin{axiom}\label{negativ_behavior} -% $x + \negativ{x} = \zero$. -%\end{axiom} - -\begin{definition}\label{reals_definition_order_def} - $x < y$ iff there exist $z \in \reals$ such that $x + (z \rmul z) = y$. +\begin{axiom}\label{one_is_suc_zero} + $\suc{\zero} = 1$. +\end{axiom} + +\begin{definition}\label{naturals} + $\naturals = \{ x \in \reals \mid \exists y \in \reals. \suc{y} = x \lor x = \zero \}$. \end{definition} -%\begin{axiom}\label{reals_axiom_order} -% $\lt[\reals]$ is an order on $\reals$. -%\end{axiom} +\begin{lemma}\label{naturals_subseteq_reals} + $\naturals \subseteq \reals$. +\end{lemma} -%\begin{abbreviation}\label{lesseq_on_reals} -% $x \leq y$ iff $(x,y) \in \lt[\reals]$. -%\end{abbreviation} +%\begin{inductive}\label{naturals_subset_reals} +% Define $\naturals \subseteq \reals$ inductively as follows. +% \begin{enumerate} +% \item $\zero \in \naturals$. +% \item If $n\in \naturals$, then $\suc{n} \in \naturals$. %Naproche translate this to for all n \in R \suc{n} \in R we want something like the definition before. +% \end{enumerate} +%\end{inductive} -\begin{abbreviation}\label{less_on_reals} - $x \leq y$ iff it is wrong that $y < x$. -\end{abbreviation} +\begin{axiom}\label{suc_eq_plus_one} + For all $n \in \naturals$ we have $\suc{n} = n + 1$. +\end{axiom} -\begin{abbreviation}\label{greater_on_reals} - $x > y$ iff $y \leq x$. +\begin{abbreviation}\label{is_a_natural_number} + $n$ is a natural number iff $n \in \naturals$. \end{abbreviation} -\begin{abbreviation}\label{greatereq_on_reals} - $x \geq y$ iff it is wrong that $x < y$. -\end{abbreviation} +\begin{axiom}\label{naturals_addition_axiom_1} + For all $n \in \naturals$ $n + \zero = \zero + n = n$. +\end{axiom} + +\begin{axiom}\label{naturals_addition_axiom_2} + For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$. +\end{axiom} + +\begin{axiom}\label{naturals_mul_axiom_1} + For all $n \in \naturals$ we have $n \rmul \zero = \zero$. +\end{axiom} + +\begin{axiom}\label{naturals_mul_axiom_2} + For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$. +\end{axiom} + +\begin{axiom}\label{addition_on_naturals} + If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. +\end{axiom} + + +\subsubsection{Properties and Facts natural numbers} + +\begin{proposition}\label{naturals_kommu} + For all $n,m \in \naturals$ we have $n + m = m + n$. +\end{proposition} +\begin{proof} + \begin{byCase} + \caseOf{$n = \emptyset$.} Trivial. + \caseOf{$m = \emptyset$.} Trivial. + \caseOf{$n \neq \emptyset \land m \neq \emptyset$.} Omitted. + \end{byCase} +\end{proof} + + + +\begin{lemma}\label{naturals_inductive_set} + $\naturals$ is an inductive set. +\end{lemma} + + +\begin{lemma}\label{naturals_smallest_inductive_set} + Let $A$ be an inductive set. + Then $\naturals\subseteq A$. +\end{lemma} + + +\begin{lemma}\label{naturals_is_equal_to_two_times_naturals} + $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +%\begin{lemma}\label{oeder_on_naturals} +% $\lt[\reals] \inter (\naturals \times \naturals)$ is an order on $\naturals$. +%\end{lemma} + + + + + + +\subsection{The Intergers} + + + \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $x < y$ then @@ -127,7 +215,9 @@ \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} - +\begin{proof} + Omitted. +\end{proof} %\begin{signature}\label{invers_is_set} @@ -147,9 +237,7 @@ % $x \rminus \addInv{x} = \zero$. %\end{lemma} -\begin{abbreviation}\label{is_positiv} - $x$ is positiv iff $x > \zero$. -\end{abbreviation} + \begin{lemma}\label{reals_add_of_positiv} Let $x,y \in \reals$. @@ -221,7 +309,9 @@ \begin{lemma}\label{order_reals_lemma00} For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} - +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. @@ -289,24 +379,13 @@ -\section{The natural numbers} -\begin{abbreviation}\label{def_suc} - $\successor{n} = n + 1$. -\end{abbreviation} -\begin{inductive}\label{naturals_definition_as_subset_of_reals} - Define $\nat \subseteq \reals$ inductively as follows. - \begin{enumerate} - \item $\zero \in \nat$. - \item If $n\in \nat$, then $\successor{n} \in \nat$. - \end{enumerate} -\end{inductive} -\begin{lemma}\label{reals_order_suc} - $n < \successor{n}$. -\end{lemma} + + + %\begin{proposition}\label{safe} % Contradiction. |
