summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/urysohn.tex18
1 files changed, 15 insertions, 3 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index bb28116..3152de7 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -262,12 +262,26 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{proof}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
\begin{proposition}\label{urysohnchain_induction_step_existence}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain in $X$.
Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
+ % U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
+ % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
+
+ Let $m = \max{\indexset[U]}$.
+ For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
+ such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
%\begin{definition}\label{refinmant}
@@ -276,9 +290,7 @@ The first tept will be a formalisation of chain constructions.
% we have there exist $c \in C'$ such that $y \subset c \subset x$
% and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
%\end{definition}
-
-
-
+ Omitted.
\end{proof}