summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--latex/naproche.sty3
-rw-r--r--latex/stdlib.tex3
-rw-r--r--library/algebra/group.tex83
-rw-r--r--library/algebra/monoid.tex19
-rw-r--r--library/everything.tex3
-rw-r--r--library/nat.tex45
-rw-r--r--library/numbers.tex140
-rw-r--r--library/order/order.tex1
-rw-r--r--library/topology/order-topology.tex7
10 files changed, 302 insertions, 3 deletions
diff --git a/.gitignore b/.gitignore
index 28ce583..ddb98c3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -41,3 +41,4 @@ premseldump/
haddocks/
stack.yaml.lock
zf*.svg
+Anmerkungen.txt
diff --git a/latex/naproche.sty b/latex/naproche.sty
index 9764693..cb65fe7 100644
--- a/latex/naproche.sty
+++ b/latex/naproche.sty
@@ -127,6 +127,9 @@
\newcommand{\Univ}[1]{\fun{Univ}(#1)}
\newcommand{\upward}[2]{#2^{\uparrow #1}}
\newcommand{\LeftOrb}[2]{#2\cdot #1}
+\newcommand{\integers}{\mathcal{Z}}
+\newcommand{\zero}{0}
+\newcommand{\one}{1}
\newcommand\restrl[2]{{% we make the whole thing an ordinary symbol
diff --git a/latex/stdlib.tex b/latex/stdlib.tex
index 3673801..dba42a2 100644
--- a/latex/stdlib.tex
+++ b/latex/stdlib.tex
@@ -36,6 +36,8 @@
\input{../library/cardinal.tex}
\input{../library/algebra/magma.tex}
\input{../library/algebra/semigroup.tex}
+ \input{../library/algebra/monoid.tex}
+ \input{../library/algebra/group.tex}
%\input{../library/algebra/quasigroup.tex}
%\input{../library/algebra/loop.tex}
\input{../library/order/order.tex}
@@ -43,4 +45,5 @@
\input{../library/topology/topological-space.tex}
\input{../library/topology/basis.tex}
\input{../library/topology/disconnection.tex}
+ \input{../library/numbers.tex}
\end{document}
diff --git a/library/algebra/group.tex b/library/algebra/group.tex
index 48934bd..a79bd2f 100644
--- a/library/algebra/group.tex
+++ b/library/algebra/group.tex
@@ -1 +1,82 @@
-\section{Groups}
+\import{algebra/monoid.tex}
+\section{Group}
+
+\begin{struct}\label{group}
+ A group $G$ is a monoid such that
+ \begin{enumerate}
+ \item\label{group_inverse} for all $g \in \carrier[G]$ there exist $h \in \carrier[G]$ such that $\mul[G](g, h) =\neutral[G]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{corollary}\label{group_implies_monoid}
+ Let $G$ be a group. Then $G$ is a monoid.
+\end{corollary}
+
+\begin{abbreviation}\label{cfourdot}
+ $g \cdot h = \mul(g,h)$.
+\end{abbreviation}
+
+\begin{lemma}\label{neutral_is_idempotent}
+ Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$.
+\end{lemma}
+
+\begin{lemma}\label{group_divison_right}
+ Let $G$ be a group. Let $a,b,c \in G$.
+ Then $a \cdot c = b \cdot c$ iff $a = b$.
+\end{lemma}
+\begin{proof}
+ Take $a,b,c \in G$ such that $a \cdot c = b \cdot c$.
+ There exist $c' \in G$ such that $c \cdot c' = \neutral[G]$.
+ Therefore $a \cdot c = b \cdot c$ iff $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$.
+ \begin{align*}
+ (a \cdot c) \cdot c'
+ &= a \cdot (c \cdot c')
+ \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\
+ &= a \cdot \neutral[G]
+ \explanation{by \cref{group_inverse}}\\
+ &= a
+ \explanation{by \cref{group_implies_monoid,monoid_right}}
+ \end{align*}
+ \begin{align*}
+ (b \cdot c) \cdot c'
+ &= b \cdot (c \cdot c')
+ \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\
+ &= b \cdot \neutral[G]
+ \explanation{by \cref{group_inverse}}\\
+ &= b
+ \explanation{by \cref{group_implies_monoid,monoid_right}}
+ \end{align*}
+ $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$ iff $a \cdot c = b \cdot c$ by assumption.
+ $a = b$ iff $a \cdot c = b \cdot c$ by assumption.
+\end{proof}
+
+
+\begin{proposition}\label{leftinverse_eq_rightinverse}
+ Let $G$ be a group and assume $a \in G$.
+ Then there exist $b\in G$
+ such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$.
+\end{proposition}
+\begin{proof}
+ There exist $b \in G$ such that $a \cdot b = \neutral[G]$.
+ There exist $c \in G$ such that $b \cdot c = \neutral[G]$.
+ $a \cdot b = \neutral[G]$.
+ $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$.
+ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
+ $a \cdot \neutral[G] = \neutral[G] \cdot c$.
+ $c = c \cdot \neutral[G]$.
+ $c = \neutral[G] \cdot c$.
+ $a \cdot \neutral[G] = c \cdot \neutral[G]$.
+ $a \cdot \neutral[G] = c$ by \cref{monoid_right,group_divison_right}.
+ $a = c$ by \cref{monoid_right,group_divison_right,neutral_is_idempotent}.
+ $b \cdot a = b \cdot c$.
+ $b \cdot a = \neutral[G]$.
+\end{proof}
+
+\begin{definition}\label{group_abelian}
+ $G$ is an abelian group iff $G$ is a group and for all $g,h \in G$ $\mul[G](g,h) = \mul[G](h,g)$.
+\end{definition}
+
+
+\begin{definition}\label{group_automorphism}
+ Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$.
+\end{definition}
diff --git a/library/algebra/monoid.tex b/library/algebra/monoid.tex
new file mode 100644
index 0000000..06fcb50
--- /dev/null
+++ b/library/algebra/monoid.tex
@@ -0,0 +1,19 @@
+\import{algebra/semigroup.tex}
+\section{Monoid}
+
+\begin{struct}\label{monoid}
+ A monoid $A$ is a semigroup equipped with
+ \begin{enumerate}
+ \item $\neutral$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{monoid_type} $\neutral[A]\in \carrier[A]$.
+ \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
+ \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
+ \end{enumerate}
+\end{struct}
+
+\begin{corollary}\label{monoid_implies_semigroup}
+ Let $A$ be a monoid. Then $A$ is a semigroup.
+\end{corollary} \ No newline at end of file
diff --git a/library/everything.tex b/library/everything.tex
index 9b85f83..61bccb2 100644
--- a/library/everything.tex
+++ b/library/everything.tex
@@ -20,12 +20,15 @@
\import{cardinal.tex}
\import{algebra/magma.tex}
\import{algebra/semigroup.tex}
+\import{algebra/monoid.tex}
+\import{algebra/group.tex}
\import{order/order.tex}
%\import{order/semilattice.tex}
\import{topology/topological-space.tex}
\import{topology/basis.tex}
\import{topology/disconnection.tex}
\import{topology/separation.tex}
+\import{numbers.tex}
\begin{proposition}\label{trivial}
$x = x$.
diff --git a/library/nat.tex b/library/nat.tex
index 529ba54..ac9a141 100644
--- a/library/nat.tex
+++ b/library/nat.tex
@@ -1,5 +1,5 @@
\import{set/suc.tex}
-
+\import{set.tex}
\section{Natural numbers}
@@ -17,5 +17,46 @@
\end{axiom}
\begin{abbreviation}\label{naturalnumber}
- $n$ is a natural number iff $n\in\naturals$.
+ $n$ is a natural number iff $n\in \naturals$.
+\end{abbreviation}
+
+\begin{lemma}\label{emptyset_in_naturals}
+ $\emptyset\in\naturals$.
+\end{lemma}
+
+\begin{signature}\label{addition_is_set}
+ $x+y$ is a set.
+\end{signature}
+
+\begin{axiom}\label{addition_on_naturals}
+ $x+y$ is a natural number iff $x$ is a natural number and $y$ is a natural number.
+\end{axiom}
+
+\begin{abbreviation}\label{zero_is_emptyset}
+ $\zero = \emptyset$.
\end{abbreviation}
+
+\begin{axiom}\label{addition_axiom_1}
+ For all $x \in \naturals$ $x + \zero = \zero + x = x$.
+\end{axiom}
+
+\begin{axiom}\label{addition_axiom_2}
+ For all $x, y \in \naturals$ $x + \suc{y} = \suc{x} + y = \suc{x+y}$.
+\end{axiom}
+
+\begin{lemma}\label{naturals_is_equal_to_two_times_naturals}
+ $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$.
+\end{lemma}
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/library/numbers.tex b/library/numbers.tex
new file mode 100644
index 0000000..93623fa
--- /dev/null
+++ b/library/numbers.tex
@@ -0,0 +1,140 @@
+\import{nat.tex}
+\import{order/order.tex}
+\import{relation.tex}
+
+\section{The real numbers}
+
+\begin{signature}
+ $\reals$ is a set.
+\end{signature}
+
+\begin{signature}
+ $x + y$ is a set.
+\end{signature}
+
+\begin{signature}
+ $x \times y$ is a set.
+\end{signature}
+
+\begin{axiom}\label{one_in_reals}
+ $1 \in \reals$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_order}
+ $\lt[\reals]$ is an order on $\reals$.
+ %$\reals$ is an ordered set.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_strictorder}
+ $\lt[\reals]$ is a strict order.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_dense}
+ For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then
+ there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$.
+
+ %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$
+ %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_order_def}
+ $(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$.
+\end{axiom}
+
+\begin{lemma}\label{reals_one_bigger_than_zero}
+ $(\zero,1) \in \lt[\reals]$.
+\end{lemma}
+
+
+\begin{axiom}\label{reals_axiom_assoc}
+ For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_kommu}
+ For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_zero_in_reals}
+ $\zero \in \reals$.
+\end{axiom}
+
+%\begin{axiom}\label{reals_axiom_one_in_reals}
+% $\one \in \reals$.
+%\end{axiom}
+
+\begin{axiom}\label{reals_axiom_zero}
+ %There exist $\zero \in \reals$ such that
+ For all $x \in \reals$ $x + \zero = x$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_one}
+ %There exist $1 \in \reals$ such that
+ For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_add_invers}
+ For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
+\end{axiom}
+
+%TODO: Implementing Notion for negativ number such as -x.
+
+%\begin{abbreviation}\label{reals_notion_minus}
+% $y = -x$ iff $x + y = \zero$.
+%\end{abbreviation} %This abbrevation result in a killed process.
+
+\begin{axiom}\label{reals_axiom_mul_invers}
+ For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
+\end{axiom}
+
+\begin{axiom}\label{reals_axiom_disstro1}
+ For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$.
+\end{axiom}
+
+\begin{proposition}\label{reals_disstro2}
+ For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$.
+\end{proposition}
+
+\begin{proposition}\label{reals_reducion_on_addition}
+ For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
+\end{proposition}
+
+\begin{signature}
+ $\invers$ is a set.
+\begin{signature}
+
+%TODO:
+%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff
+%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
+%\cdot für multiklikation verwenden.
+%< für die relation benutzen.
+
+%\begin{signature}
+% $y^{\rightarrow}$ is a function.
+%\end{signature}
+
+%\begin{axiom}\label{notion_multi_invers}
+% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$.
+%\end{axiom}
+
+%\begin{abbreviation}\label{notion_fraction}
+% $\frac{x}{y} = x \times y^{\rightarrow}$.
+%\end{abbreviation}
+
+\begin{lemma}\label{order_reals_lemma1}
+ For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
+ if $(y,z) \in \lt[\reals]$
+ then $((y \times x), (z \times x)) \in \lt[\reals]$.
+\end{lemma}
+
+\begin{lemma}\label{order_reals_lemma2}
+ For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
+ if $(y,z) \in \lt[\reals]$
+ then $((x \times y), (x \times z)) \in \lt[\reals]$.
+\end{lemma}
+
+
+\begin{lemma}\label{order_reals_lemma3}
+ For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$
+ if $(y,z) \in \lt[\reals]$
+ then $((x \times z), (x \times y)) \in \lt[\reals]$.
+\end{lemma}
diff --git a/library/order/order.tex b/library/order/order.tex
index 339bad8..1b7692f 100644
--- a/library/order/order.tex
+++ b/library/order/order.tex
@@ -1,6 +1,7 @@
\import{relation.tex}
\import{relation/properties.tex}
\import{order/quasiorder.tex}
+\section{Order}
% also called "(partial) ordering" or "partial order" to contrast with connex (i.e. "total") orders.
\begin{abbreviation}\label{order}
diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex
new file mode 100644
index 0000000..afa8755
--- /dev/null
+++ b/library/topology/order-topology.tex
@@ -0,0 +1,7 @@
+\import{topology/topological-space.tex}
+
+\section{Order Topology}
+
+\begin{definition}
+ A
+\end{definition}