1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
\import{nat.tex}
\import{order/order.tex}
\import{relation.tex}
\section{The real numbers}
\begin{signature}
$\reals$ is a set.
\end{signature}
\begin{signature}
$x + y$ is a set.
\end{signature}
\begin{signature}
$x \times y$ is a set.
\end{signature}
\begin{axiom}\label{one_in_reals}
$1 \in \reals$.
\end{axiom}
\begin{axiom}\label{reals_axiom_order}
$\lt[\reals]$ is an order on $\reals$.
%$\reals$ is an ordered set.
\end{axiom}
\begin{axiom}\label{reals_axiom_strictorder}
$\lt[\reals]$ is a strict order.
\end{axiom}
\begin{axiom}\label{reals_axiom_dense}
For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then
there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$.
%For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$
%then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$.
\end{axiom}
\begin{axiom}\label{reals_axiom_order_def}
$(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$.
\end{axiom}
\begin{lemma}\label{reals_one_bigger_than_zero}
$(\zero,1) \in \lt[\reals]$.
\end{lemma}
\begin{axiom}\label{reals_axiom_assoc}
For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$.
\end{axiom}
\begin{axiom}\label{reals_axiom_kommu}
For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_zero_in_reals}
$\zero \in \reals$.
\end{axiom}
%\begin{axiom}\label{reals_axiom_one_in_reals}
% $\one \in \reals$.
%\end{axiom}
\begin{axiom}\label{reals_axiom_zero}
%There exist $\zero \in \reals$ such that
For all $x \in \reals$ $x + \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
%There exist $1 \in \reals$ such that
For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_add_invers}
For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
\end{axiom}
%TODO: Implementing Notion for negativ number such as -x.
%\begin{abbreviation}\label{reals_notion_minus}
% $y = -x$ iff $x + y = \zero$.
%\end{abbreviation} %This abbrevation result in a killed process.
\begin{axiom}\label{reals_axiom_mul_invers}
For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
\end{axiom}
\begin{axiom}\label{reals_axiom_disstro1}
For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$.
\end{axiom}
\begin{proposition}\label{reals_disstro2}
For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$.
\end{proposition}
\begin{proposition}\label{reals_reducion_on_addition}
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
\begin{signature}
$\invers$ is a set.
\begin{signature}
%TODO:
%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden.
%< für die relation benutzen.
%\begin{signature}
% $y^{\rightarrow}$ is a function.
%\end{signature}
%\begin{axiom}\label{notion_multi_invers}
% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$.
%\end{axiom}
%\begin{abbreviation}\label{notion_fraction}
% $\frac{x}{y} = x \times y^{\rightarrow}$.
%\end{abbreviation}
\begin{lemma}\label{order_reals_lemma1}
For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
if $(y,z) \in \lt[\reals]$
then $((y \times x), (z \times x)) \in \lt[\reals]$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma2}
For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
if $(y,z) \in \lt[\reals]$
then $((x \times y), (x \times z)) \in \lt[\reals]$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma3}
For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$
if $(y,z) \in \lt[\reals]$
then $((x \times z), (x \times y)) \in \lt[\reals]$.
\end{lemma}
|