summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/topological-space.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index 6ddf721..5209a13 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -291,7 +291,7 @@
\end{subproof}
$\closures{A}{X}$ is inhabited.
For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$.
- Therefore $A \subseteq \inters{\closures{A}{X}}$.
+ Therefore $A \subseteq \inters{\closures{A}{X}}$ by \cref{subseteq_inters_iff}.
\end{byCase}
\end{proof}