summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/relation/equivalence.tex107
-rw-r--r--source/Syntax/Lexicon.hs1
2 files changed, 57 insertions, 51 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
index 87f70af..0c5dbfa 100644
--- a/library/relation/equivalence.tex
+++ b/library/relation/equivalence.tex
@@ -219,54 +219,59 @@
\end{proof}
-%
-%\begin{definition}\label{equivalence_from_partition}
-% $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
-%\end{definition}
-%
-%\begin{proposition}\label{equivalence_from_partition_intro}
-% Let $P$ be a partition of $A$.
-% Let $a,b\in A$.
-% Suppose $a,b\in C\in P$.
-% Then $a\mathrel{\equivfrompartition{P}} b$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_reflexive}
-% Let $P$ be a partition of $A$.
-% $\equivfrompartition{P}$ is reflexive on $A$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_symmetric}
-% Let $P$ be a partition.
-% $\equivfrompartition{P}$ is symmetric.
-%\end{proposition}
-%\begin{proof}
-% Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
-%\end{proof}
-%
-%\begin{proposition}\label{equivalence_from_partition_transitive}
-% Let $P$ be a partition.
-% $\equivfrompartition{P}$ is transitive.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_partition_is_equivalence}
-% Let $P$ be a partition of $A$.
-% $\equivfrompartition{P}$ is an equivalence on $A$.
-%\end{proposition}
-%
-%\begin{proposition}\label{equivalence_from_quotient}
-% Let $E$ be an equivalence on $A$.
-% Then $\equivfrompartition{\quotient{A}{E}} = E$.
-%\end{proposition}
-%\begin{proof}
-% Follows by set extensionality.
-%\end{proof}
-%
-%\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
-% Let $P$ be a partition of $A$.
-% Then $\quotient{A}{\equivfrompartition{P}} = P$.
-%\end{proposition}
-%\begin{proof}
-% Follows by set extensionality.
-%\end{proof}
-% \ No newline at end of file
+
+\begin{definition}\label{equivalence_from_partition}
+ $\equivfrompartition{P}{A} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
+\end{definition}
+
+\begin{proposition}\label{equivalence_from_partition_intro}
+ Let $P$ be a partition of $A$.
+ Let $a,b\in A$.
+ Suppose $a,b\in C\in P$.
+ Then $a\mathrel{\equivfrompartition{P}{A}} b$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_reflexive}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}{A}$ is reflexive on $A$.
+\end{proposition}
+
+\begin{proposition}\label{equivalence_from_partition_symmetric}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}{A}$ is symmetric.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_partition_transitive}
+ Let $P$ be a partition.
+ $\equivfrompartition{P}{A}$ is transitive.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_partition_is_equivalence}
+ Let $P$ be a partition of $A$.
+ $\equivfrompartition{P}{A}$ is an equivalence on $A$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{equivalence_from_quotient}
+ Let $E$ be an equivalence on $A$.
+ Then $\equivfrompartition{\quotient{A}{E}}{A} = E$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
+ Let $P$ be a partition of $A$.
+ Then $\quotient{A}{\equivfrompartition{P}{A}} = P$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
diff --git a/source/Syntax/Lexicon.hs b/source/Syntax/Lexicon.hs
index b5e4f58..463dd18 100644
--- a/source/Syntax/Lexicon.hs
+++ b/source/Syntax/Lexicon.hs
@@ -109,6 +109,7 @@ prefixOps =
, ([Just (Command "fst"), Just InvisibleBraceL, Nothing, Just InvisibleBraceR], (NonAssoc, "fst"))
, ([Just (Command "snd"), Just InvisibleBraceL, Nothing, Just InvisibleBraceR], (NonAssoc, "snd"))
, ([Just (Command "pow"), Just InvisibleBraceL, Nothing, Just InvisibleBraceR], (NonAssoc, "pow"))
+ , ([Just (Command "neg"), Just InvisibleBraceL, Nothing, Just InvisibleBraceR], (NonAssoc, "neg"))
, (ConsSymbol, (NonAssoc, "cons"))
, (PairSymbol, (NonAssoc, "pair"))
-- NOTE Is now defined and hence no longer necessary , (ApplySymbol, (NonAssoc, "apply"))