summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/numbers.tex68
1 files changed, 66 insertions, 2 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index b83827a..113aadb 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -102,7 +102,7 @@
\end{axiom}
\begin{axiom}\label{naturals_mul_axiom_1}
- For all $n \in \naturals$ we have $n \rmul \zero = \zero$.
+ For all $n \in \naturals$ we have $n \rmul \zero = \zero = \zero \rmul n$.
\end{axiom}
\begin{axiom}\label{naturals_mul_axiom_2}
@@ -203,6 +203,9 @@
Let $n \in \naturals$.
Then $1 + n = n + 1$.
\end{proposition}
+\begin{proof}
+ Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}.
+\end{proof}
\begin{proposition}\label{naturals_add_kommu}
For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$.
@@ -240,14 +243,75 @@
\end{proof}
\begin{proposition}\label{naturals_rmul_one}
- For all $n \in \naturals$ we have $n \rmul 1 = n$.
+ For all $n \in \naturals$ we have $1 \rmul n = n$.
\end{proposition}
+\begin{proof}
+ Fix $n \in \naturals$.
+ \begin{align*}
+ 1 \rmul n \\
+ &= \suc{\zero} \rmul n \\
+ &= (\zero \rmul n) + n \\
+ &= (\zero) + n \\
+ &= n
+ \end{align*}
+\end{proof}
+
+\begin{proposition}\label{naturals_add_remove_brakets}
+ Suppose $n,m,k \in \naturals$.
+ Then $(n + m) + k = n + m + k$.
+\end{proposition}
+
+\begin{proposition}\label{natural_disstro}
+ Suppose $n,m,k \in \naturals$.
+ Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
+\end{proposition}
+\begin{proof}
+ Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$.
+ $\zero \in P$.
+ $P \subseteq \naturals$.
+ It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.
+ Fix $n \in P$.
+ It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$.
+ Fix $m \in \naturals$.
+ It suffices to show that for all $k \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$.
+ Fix $k \in \naturals$.
+ \begin{align*}
+ \suc{n} \rmul (m + k) \\
+ &= (n \rmul (m + k)) + (m + k) \\% \explanation{by \cref{naturals_mul_axiom_2}}\\
+ &= ((n \rmul m) + (n \rmul k)) + (m + k) \explanation{by assumption}\\
+ &= ((n \rmul m) + (n \rmul k)) + m + k \explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\
+ &= (((n \rmul m) + (n \rmul k)) + m) + k \explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\
+ &= (m + ((n \rmul m) + (n \rmul k))) + k \explanation{by \cref{naturals_add_kommu}}\\
+ &= ((m + (n \rmul m)) + (n \rmul k)) + k \explanation{by \cref{naturals_add_assoc}}\\
+ &= (((n \rmul m) + m) + (n \rmul k)) + k \explanation{by \cref{naturals_add_kommu}}\\
+ &= ((n \rmul m) + m) + ((n \rmul k) + k) \explanation{by \cref{naturals_add_assoc}}\\
+ &= (\suc{n} \rmul m) + (\suc{n} \rmul k) \explanation{by \cref{naturals_mul_axiom_2}}
+ \end{align*}
+\end{proof}
\begin{proposition}\label{naturals_mul_kommu}
Let $n, m \in \naturals$.
Then $n \rmul m = m \rmul n$.
\end{proposition}
+\begin{proof}
+ Let $P = \{n \in \naturals \mid \forall m \in \naturals. n \rmul m = m \rmul n\}$.
+ $\zero \in P$.
+ $P \subseteq \naturals$.
+ It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.
+ Fix $n \in P$.
+ It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$.
+ Fix $m \in \naturals$.
+ $n \rmul m = m \rmul n$.
+
+ \begin{align*}
+ \suc{n} \rmul m \\
+ &= (n \rmul m) + m \\
+ &= (m \rmul n) + m \\
+ &= m + (m \rmul n) \\
+ &= m \rmul \suc{n} \\
+ \end{align*}
+\end{proof}
\begin{proposition}\label{naturals_rmul_assoc}
Suppose $n,m,k \in \naturals$.